1 CPU 金牌6326 16核心32线程 基频29GHZ 加速频率35GHZ TDP: 185W 2
2 内存 512G(32GB32) DDR4 3200MHZ 1
4 准系统 超微420GP-TNR 4U机架式准系统, 带2200W冗余2+2电源;平台最大支持lO个GPU
32个DIMM插槽;母板超级X12DPG-OA6处理器中央处理器双插槽 P+ (LGA-4189)第三代英特尔 至强 可扩展处理器支持CPU TDP 270W核心高达40C/80T;高达 60MB 的缓存图形处理器支持的GPUHGX A100 8-GPU 40GB/80GB SXM4 多 GPU 1
5 SSD 三星PM9A1 1TB M2接口 NVMe协议 四通道 PCIe40 固态硬盘 1
6 SATA 希捷(Seagate)银河系列V6 6TB ST6000NM021A 7200RPM 256MB SATA3企业级硬盘 1
7 GPU卡 英伟达RTX 4090公版 4有啊,蓝海大脑的就可以。其水冷工作站具有高性能,高密度、扩展性强等特点。液冷GPU服务器产品支持1~20块 GPU卡⌄适用于深度学习训练及推理、生命科学、医药研发、虚拟仿真等场景,覆盖服务器、静音工作站、数据中心等多种产品形态,量身定制,满足客户全场景需求。主要是看运行什么软件和数据量,训练数值大小,这里要强调一下,数值大小和数据量是不一样的。
深度学习服务器的核心部件还是CPU、硬盘、内存、GPU,特别是很多深度学习依靠GPU的大规模数据处理能力,这就要强调CPU的计算能力和数量,同时不同的数据对GPU的显存要求也不一样。
当下大部分都在用RTX3090做深度学习,最新RTX4090已经上市,单精度计算能力是RTX3090的2倍,这两个GPU都是24G显存;像A100强调双精度计算能力,显存有40G和80G两个版本,而A6000单精度计算能和RTX3090差不多,显存是48G,可以参考选择。
当然,最重要的还是口袋里的银子,A6000市场价大概是RTX的2倍还要多,A100最近更是要上十万了,估计也快买不到了,价高缺货;RTX3090/4090的价位低,性价比高,这也是为什么大部分人都选择它们做深度学习了,这是市场的选择。根据不同的深度学习架构,GPU参数的选择优先级不同,性价比可能是选择一款GPU最重要的考虑因素。Nvidia无疑是深度学习硬件领域的领导者。大多数深度学习库为英伟达GPU提供了最好的支持,软件是英伟达GPU非常强大的一部分。我们公司的服务器和英伟达官方授权经销商蓝海大脑有合作。质量和售后服务都挺好的⌄到现在都没出过问题。实事求是的说,蓝海大脑的深度学习边缘计算服务器不错,除了夏天有点热。他们的服务器功耗低,性能可靠,最重要的是可以用于深度学习、自动驾驶、人脸检测、机器识别、视觉识别、行为识别等领域。亿万克的R922N5服务器。
亿万克亚当R922N5是一款搭载英特尔Purley平台可扩展系列处理器的2U双路计算型服务器,单颗CPU最高拥有28个内核及56线程,最大TDP 205W,结合领先的AI计算性能,能游刃有余地处理企业虚拟化、图形编辑、视频直播、神经网络、深度学习、推理等多种AI场景应用。
服务器的易使用性主要体现在服务器是不是容易 *** 作,用户导航系统是不是完善,机箱设计是不是人性化,有没有关键恢复功能,是否有 *** 作系统备份,以及有没有足够的培训支持等方面。感兴趣的话点击此处,了解一下
想了解更多关于服务器的相关知识,建议到亿万克官网了解一下,亿万克集服务器和存储等数据中心产品的研发、生产、销售、服务系统整合于一体,是民族高科技制造企业领导品牌 ,作为中国战略性新兴产业领军品牌,拥有中国第一、世界前二的行业领先技术。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)