现在越来越多的存储服务器使用arm CPU+磁盘阵列节省能耗,提高“容量能耗比”。
现有的分布式存储系统采用了容错机制,会使用副本(一份数据保存多份)或者纠删码(erasure codes,n 个存储节点中任意m 个坏了数据都还可以访问,n>m)。1、什么是数据中心分布式部署
数据中心分布式部署,边缘数据中心是基础,是CDN的更下一层,服务对象是IDC及CDN需求的客户。对于流量大的客户,可多点分布,就近部署。
2、分布式部署的好处
A:在全国没有任何一个数据中心可以覆盖全国的每个角落,数据中心集中在一个点不能更好的服务全国各区域。分布式部署相当于在欧洲很多个国家之间的互联网关系。二三线城市就近布点,三级城市网络品质提升。针对网游、网络视频、网络下载等全国分布节点需求较高的客户,选择分布式节点托管在降低成本的同时还更好的保障了二、三级城市业务的网络运营品质,提升用户体验。
B:二三级城市较低的资源成本直接降低了客户网络资源投入。在良好品质保障的情况下,以更低价格购入,实现良好性价比。多CPU,多内存不是分布式的。你可以把分布式的想像成DNS系统,由多个节点组成,共同完成相同的任务。
分布式软件系统(Distributed Software Systems)是支持分布式处理的软件系统,是在由通信网络互联的多处理机体系结构上执行任务的系统。它包括分布式 *** 作系统、分布式程序设计语言及其编译(解释)系统、分布式文件系统和分布式数据库系统等。
分布式 *** 作系统负责管理分布式处理系统资源和控制分布式程序运行。它和集中式 *** 作系统的区别在于资源管理、进程通信和系统结构等方面。
分布式程序设计语言用于编写运行于分布式计算机系统上的分布式程序。一个分布式程序由若干个可以独立执行的程序模块组成,它们分布于一个分布式处理系统的多台计算机上被同时执行。它与集中式的程序设计语言相比有三个特点:分布性、通信性和稳健性。
分布式文件系统具有执行远程文件存取的能力,并以透明方式对分布在网络上的文件进行管理和存取。
分布式数据库系统由分布于多个计算机结点上的若干个数据库系统组成,它提供有效的存取手段来 *** 纵这些结点上的子数据库。分布式数据库在使用上可视为一个完整的数据库,而实际上它是分布在地理分散的各个结点上。当然,分布在各个结点上的子数据库在逻辑上是相关的。
---------------
分布式数据库系统是由若干个站集合而成。这些站又称为节点,它们在通讯网络中联接在一起,每个节点都是一个独立的数据库系统,它们都拥有各自的数据库、中央处理机、终端,以及各自的局部数据库管理系统。因此分布式数据库系统可以看作是一系列集中式数据库系统的联合。它们在逻辑上属于同一系统,但在物理结构上是分布式的。
分布式数据库系统已经成为信息处理学科的重要领域,正在迅速发展之中,原因基于以下几点:
1、它可以解决组织机构分散而数据需要相互联系的问题。比如银行系统,总行与各分行处于不同的城市或城市中的各个地区,在业务上它们需要处理各自的数据,也需要彼此之间的交换和处理,这就需要分布式的系统。
2、如果一个组织机构需要增加新的相对自主的组织单位来扩充机构,则分布式数据库系统可以在对当前机构影响最小的情况下进行扩充。
3、均衡负载的需要。数据的分解采用使局部应用达到最大,这使得各处理机之间的相互干扰降到最低。负载在各处理机之间分担,可以避免临界瓶颈。
4、当现有机构中已存在几个数据库系统,而且实现全局应用的必要性增加时,就可以由这些数据库自下而上构成分布式数据库系统。
5、相等规模的分布式数据库系统在出现故障的几率上不会比集中式数据库系统低,但由于其故障的影响仅限于局部数据应用,因此就整个系统来讲它的可靠性是比较高的。
特点
1、在分布式数据库系统里不强调集中控制概念,它具有一个以全局数据库管理员为基础的分层控制结构,但是每个局部数据库管理员都具有高度的自主权。
2、在分布式数据库系统中数据独立性概念也同样重要,然而增加了一个新的概念,就是分布式透明性。所谓分布式透明性就是在编写程序时好象数据没有被分布一样,因此把数据进行转移不会影响程序的正确性。但程序的执行速度会有所降低。
3、集中式数据库系统不同,数据冗余在分布式系统中被看作是所需要的特性,其原因在于:首先,如果在需要的节点复制数据,则可以提高局部的应用性。其次,当某节点发生故障时,可以 *** 作其它节点上的复制数据,因此这可以增加系统的有效性。当然,在分布式系统中对最佳冗余度的评价是很复杂的。
分布式系统的类型,大致可以归为三类:
1、分布式数据,但只有一个总 据库,没有局部数据库。
2、分层式处理,每一层都有自己的数据库。
3、充分分散的分布式网络,没有中央控制部分,各节点之间的联接方式又可以有多种,如松散的联接,紧密的联接,动态的联接,广播通知式联接等。
---------------------
什么是分布式智能
NI LabVIEW 8的分布式智能结合了相关的技术和工具,解决了分布式系统开发会碰到的一些挑战。更重要的是,NI LabVIEW 8的分布式智能提供的解决方案不仅令这些挑战迎刃而解,且易于实施。LabVIEW 8的分布式智能具体包括:
可对分布式系统中的所有结点编程——包括主机和终端。尤为可贵的是,您可以利用LabVIEW图形化编程方式,对大量不同类型的对象进行编程,如桌面处理器、实时系统、FPGA、PDA、嵌入式微处理器和DSP。
导航所有系统结点的查看系统——LabVIEW Project Explorer。您可使用Project Explorer查看、编辑、运行和调试运行于任何对象上的结点。
经简化的数据共享编程界面——共享变量。使用共享变量,您可轻松地在系统间(甚至实时系统间)传输数据且不影响性能。无通信循环,无RT FIFO,无需低层次TCP函数。您可以利用简单的对话完成共享变量的配置,从而将数据在各系统间传输或将数据连接到不同的数据源。您还可添加记录、警报、事件等数据服务――一切仅需简单的对话即可完成。
实现了远程设备及系统内部或设备及系统之间的同步 *** 作——定时和同步始终是定义高性能测量和控制系统的关键问题。利用基于NI技术的系统,探索设备内部并编写其内部运行机制,从而取得比传统仪器或PLC方式下更为灵活的解决方案。
--------------------
在分布式计算机 *** 作系统支持下,互连的计算机可以互相协调工作,共同完成一项任务。
也可以这么解释:
一种计算机硬件的配置方式和相应的功能配置方式。它是一种多处理器的计算机系统,各处理器通过互连网络构成统一的系统。系统采用分布式计算结构,即把原来系统内中央处理器处理的任务分散给相应的处理器,实现不同功能的各个处理器相互协调,共享系统的外设与软件。这样就加快了系统的处理速度,简化了主机的逻辑结构vv集群就是很多的服务器来实现一种功能,向mysql,很多的服务器都安装mysql,负载均衡就是用来调节的,比方说有很多的用户都在访问读取数据,可是读取a服务器的mysql多,而读取别的服务器的mysql就少,负载均衡把访问a的用户转给b一部分,防止a由于访问量过大造成宕机什么的。分布式就是有很多把服务器的相同功能分别部署在很多太计算机上,然后每个地方放上几台,这几台负责提供本地的服务,并且和总的服务器连接,保持数据传递。说说数据库集群吧
集群主要分成三大类 (高可用集群, 负载均衡集群,科学计算集群)
高可用集群( High Availability Cluster)
负载均衡集群(Load Balance Cluster)
科学计算集群(High Performance Computing Cluster)
1、高可用集群(High Availability Cluster)
常见的就是2个节点做成的HA集群,有很多通俗的不科学的名称,比如”双机热备”, “双机互备”, “双机”。高可用集群解决的是保障用户的应用程序持续对外提供服务的能力。 (请注意高可用集群既不是用来保护业务数据的,保护的是用户的业务程序对外不间断提供服务,把因软件/硬件/人为造成的故障对业务的影响降低到最小程度)。
2、负载均衡集群(Load Balance Cluster)
负载均衡系统:集群中所有的节点都处于活动状态,它们分摊系统的工作负载。一般Web服务器集群、数据库集群和应用服务器集群都属于这种类型。
负载均衡集群一般用于相应网络请求的网页服务器,数据库服务器。这种集群可以在接到请求时,检查接受请求较少,不繁忙的服务器,并把请求转到这些服务器上。从检查其他服务器状态这一点上看,负载均衡和容错集群很接近,不同之处是数量上更多。
3、科学计算集群(High Performance Computing Cluster)
高性能计算(High Perfermance Computing)集群,简称HPC集群。这类集群致力于提供单个计算机所不能提供的强大的计算能力。
高性能计算分类:
31、高吞吐计算(High-throughput Computing)
有一类高性能计算,可以把它分成若干可以并行的子任务,而且各个子任务彼此间没有什么关联。象在家搜寻外星人( SETI@HOME – Search for Extraterrestrial Intelligence at Home )就是这一类型应用。
这一项目是利用Internet上的闲置的计算资源来搜寻外星人。SETI项目的服务器将一组数据和数据模式发给Internet上参加SETI的计算节点,计算节点在给定的数据上用给定的模式进行搜索,然后将搜索的结果发给服务器。服务器负责将从各个计算节点返回的数据汇集成完整的 数据。因为这种类型应用的一个共同特征是在海量数据上搜索某些模式,所以把这类计算称为高吞吐计算。
所谓的Internet计算都属于这一类。按照 Flynn的分类,高吞吐计算属于SIMD(Single Instruction/Multiple Data)的范畴。
32、分布计算(Distributed Computing)
另一类计算刚好和高吞吐计算相反,它们虽然可以给分成若干并行的子任务,但是子任务间联系很紧密,需要大量的数据交换。按照Flynn的分类,分布式的高性能计算属于MIMD(Multiple Instruction/Multiple Data)的范畴。
下面说说这几种集群的应用场景:
高可用集群这里不多作说明。
想Dubbo是比较偏向于负载均衡集群,用过的猿友应该知道(不知道的可以自行了解一下),Dubbo同一个服务是可以有多个提供者的,当一个消费者过来,它要消费那个提供者,这里是有负载均衡机制在里面的。
搜索引擎Elasticsearch比较偏向于科学计算集群的分布计算。
而到这里,可能不少猿友都知道,集群的一些术语:集群容错、负载均衡。
我们以Dubbo为例:
集群容错(>服务器集群:
服务器集群就是指将很多服务器集中起来一起进行同一种服务,在客户端看来就像是只有一个服务器。集群可以利用多个计算机进行并行计算从而获得很高的计算速度,也可以用多个计算机做备份,从而使得任何一个机器坏了整个系统还是能正常运行。
服务器负载均衡:
负载均衡
(Load
Balancing)
建立在现有网络结构之上,它提供了一种廉价有效透明的方法扩展网络设备和服务器的带宽、增加吞吐量、加强网络数据处理能力、提高网络的灵活性和可用性。
分布式服务器:
所谓分布式资源共享服务器就是指数据和程序可以不位于一个服务器上,而是分散到多个服务器,以网络上分散分布的地理信息数据及受其影响的数据库 *** 作为研究对象的一种理论计算模型服务器形式。分布式有利于任务在整个计算机系统上进行分配与优化,克服了传统集中式系统会导致中心主机资源紧张与响应瓶颈的缺陷,解决了网络GIS
中存在的数据异构、数据共享、运算复杂等问题,是地理信息系统技术的一大进步。
这个三种架构都是常见的服务器架构,集群的主要是IT公司在做,可以保障重要数据安全;负载均衡主要是为了分担访问量,避免临时的网络堵塞,主要用于电子商务类型的网站;分布式服务器主要是解决跨区域,多个单个节点达到高速访问的目前,一般是类似CDN的用途的话,会采用分布式服务器。
纯手工打字,希望可以帮的到你!Dryad:MapReduce之外的新思路 目前各大软件巨头都搭建了自己的分布式平台解决方案,主要包括Dryad,DynamoSDMapReduce等框架。2010年12月21日,微软发布了Dryad的测试版本,成为谷歌MapReduce分布式并行计算平台的竞争对手。Dryad是微软构建云计算基础设施的重要核心技术之一,它可以让开发人员在Windows或者,NET平台上编写大规模的并行应用程序模型,并能够让在单机上编写的程序运行在分布式并行计算平台上。工程师可以利用数据中心的服务器集群对数据进行并行处理,当工程师在 *** 作数千台计算机时,无需关心分布式并行计算系统方面的细节。
DryadgDDryadLINO是微软硅谷研究院创建的研究项目,主要用来提供一个分布式并行计算平台。DryadLINO是分布式计算语言,能够将LINQ编写的程序转变为能够在Dryad上运行的程序,使普通程序员也可以轻易进行大规模的分布式计算。它结合了微软Dryad和LINO两种关键技术,被用于在该平台上构建应用。Dryad构建在Cluster Service(集群服务)和分布式文件系统之上,可以处理任务的创建和管理、资源管理,任务监控和可视化、容错,重新执行和调度等工作。
Dryad同MapReduce样,它不仅仅是种编程模型,同时也是一种高效的任务调度模型。Dryad这种编程模型不仅适用于云计算,在多核和多处理器以及异构机群上同样有良好的性能。在VisualStudio 2010 C++有一套并行计算编程框架,支持常用的协同任务调度和硬件资源(例如CPU和内存等)管理,通过WorkStealing算法可以充分利用细颗粒度并行的优势,来保证空闲的线程依照一定的策略建模,从所有线程队列中“偷取”任务执行,所以能够让任务和数据粒度并行。Dryad与上述并行框架相似,同样可以对计算机和它们的CPU进行调度,不同的是Dryad被设计为伸缩于各种规模的集群计算平台,无论是单台多核计算机还是由多台计算机组成的集群,甚至拥有数千台计算机的数据中心,都能以从任务队列中创建的策略建模来实现分布式并行计算的编程框架。
Dryad系统架构
Dryad系统主要用来构建支持有向无环图(Directed Acycline Graph,DAG)类型数据流的并行程序,然后根据程序的要求进行任务调度,自动完成任务在各个节点上的运行。在Dryad平台上,每个任务或并行计算过程都可以被表示为一个有向无环图,图中的每个节点表示一个要执行的程序,节点之间的边表示数据通道中数据的传输方式,其可能是文件、TCPPipe、共享内存
用Dryad平台时,首先需要在任务管理(JM)节点上建立自己的任务,每一个任务由一些处理过程以及在这些处理过程问的数据传递组成。任务管理器(JM)获取无环图之后,便会在程序的输入通道准备,当有可用机器的时候便对它进行调度。JM从命名服务器(NS)那里获得一个可用的计算机列表,并通过一个维护进程(PD)来调度这个程序。
Dryad的执行过程可以看做是一个二维管道流的处理过程,其中每个节点可以具有多个程序的执行,通过这种算法可以同时处理大规模数据。在每个节点进程(VerticesProcesses)上都有一个处理程序在运行,并且通过数据管道(Channels)的方式在它们之间传送数据。二维的Dryad管道模型定义了一系列的 *** 作,可以用来动态地建立并且改变这个有向无环图。这些 *** 作包括建立新的节点,在节点之间加入边,合并两个图以及对任务的输入和输出进行处理等。
Dryad模型算法应用
DryadLINQ可以根据工程师给出的LINQ查询生成可以在Dryad引擎上执行的分布式策略算法建模(运算规则),并负责任务的自动并行处理及数据传递时所需要的序列化等 *** 作。此外,它还提供了一系列易于使用的高级特性,如强类型数据、Visual Studio集成调试以及丰富的任务优化策略(规则)算法等。这种模型策略开发框架也比较适合采用领域驱动开发设计(DDD)来构建“云”平台应用,并能够较容易地做到自动化分布式计算。
我们经常会遇到网站或系统无法承载大规模用户并发访问的问题,解决该问题的传统方法是使用数据库,通过数据库所提供的访问 *** 作接口来保证处理复杂查询的能力。当访问量增大,单数据库处理不过来时便增加数据库服务器。如果增加了三台服务器,再把用户分成了三类A(学生)、B(老师),C(工程师)。每次访问时先查看用户属于哪一类,然后直接访问存储那类用户数据的数据库,则可将处理能力增加三倍,这时我们已经实现了一个分布式的存储引擎过程。
我们可以通过Dryad分布式平台来解决云存储扩容困难的问题。如果这三台服务器也承载不了更大的数据要求,需要增加到五台服务器,那必须更改分类方法把用户分成五类,然后重新迁移已经存在的数据,这时候就需要非常大的迁移工作,这种方法显然不可取。另外,当群集服务器进行分布式计算时,每个资源节点处理能力可能有所不同(例如采用不同硬件配置的服务器),如果只是简单地把机器直接分布上去,性能高的机器得不到充分利用,性能低的机器处理不过来。
Dryad解决此问题的方法是采用虚节点,把上面的A、B、C三类用户都想象成一个逻辑上的节点。一台真实的物理节点可能会包含一个或者几个虚节点(逻辑节点),看机器的性能而定。我们可以把那任务程序分成Q等份(每一个等份就是一个虚节点),这个Q要远大于我们的资源数。现在假设我们有S个资源,那么每个资源就承担Q/S个等份。当一个资源节点离开系统时,它所负责的等份要重新均分到其他资源节点上;当一个新节点加入时,要从其他的节点1偷取2一定数额的等份。
在这个策略建模算法下,当一个节点离开系统时,虽然需要影响到很多节点,但是迁移的数据总量只是离开那个节点的数据量。同样,~个新节点的加入,迁移的数据总量也只是一个新节点的数据量。之所以有这个效果是因为Q的存在,使得增加和减少节点的时候不需要对已有的数据做重新哈希(D)。这个策略的要求是Q>>s(存储备份上,假设每个数据存储N个备份则要满足Q>>SN)。如果业务快速发展,使得不断地增加主机,从而导致Q不再满足Q>>S,那么这个策略将重新变化。
Dryad算法模型就是一种简化并行计算的编程模型,它向上层用户提供接口,屏蔽了并行计算特别是分布式处理的诸多细节问题,让那些没有多少并行计算经验的开发 人员也可以很方便地开发并行应用,避免了很多重复工作。这也就是Dryad算法模型的价值所在,通过简化编程模型,降低了开发并行应用的入门门槛,并且能大大减轻了工程师在开发大规模数据应用时的负担。
通过上述的论述,我们可以看到Dryad通过一个有向无环图的策略建模算法,提供给用户一个比较清晰的编程框架。在这个编程框架下,用户需要将自己的应用程序表达为有向无环图的形式,节点程序则编写为串行程序的形式,而后用Dryad方法将程序组织起来。用户不需要考虑分布式系统中关于节点的选择,节点与通信的出错处理手段都简单明确,内建在Dryad框架内部,满足了分布式程序的可扩展性、可靠性和对性能的要求。
使用Drvad LINO
通过使用DryadLINQ编程,使工程师编写大型数据并行程序能够轻易地运行在大型计算机集群里。DryadLINO开发的程序是一组顺序的L_NQ代码,它们可以针对数据集做任何无副作用的 *** 作,编译器会自动将其中数据并行的部分翻译成并行执行的计划,并交由底层的Dryad平台完成计算,从而生成每个节点要执行的代码和静态数据,并为所需要传输的数据类型生成序列化代码;
LINQ本身是,NET引入的组编程结构,它用于像 *** 作数据库中的表一样来 *** 作内存中的数据集合。DryadLINQ提供的是一种通用的开发/运行支持,而不包含任何与实际业务,算法相关的逻辑,Dryad和DryadLINQ都提供有API。DryadLINQ使用和LINQ相同的编程模型,并扩展了少量 *** 作符和数据类型以适用于数据并行的分布式计算。并从两方面扩展了以前的计算模型(SQL,MapReduce,Dryad等)它是基于,NET强类型对象的,表达力更强的数据模型和支持通用的命令式和声明式编程(混合编程),从而延续了LINQ代码即数据(treat codeas data)的特性。
DryadLINQ使用动态的代码生成器,将DryadLINQ表达式编译成,NET字节码。这些编译后的字节码会根据调度执行的需要,被传输到执行它的机器上去。字节码中包含两类代码完成某个子表达式计算的代码和完成输入输出序列化的代码。这种表达式并不会被立刻计算,而是等到需要其结果的时候才进行计算。DryadLINQ设计的核心是在分布式执行层采用了一种完全函数式的,声明式的表述,用于表达数据并行计算中的计算。这种设计使得我们可以对计算进行复杂的重写和优化,类似于传统的并行数据库。从而解决了传统分布式数据库SQL语句功能受限与类型系统受限问题,以及MapReduce模型中的计算模型受限和没有系统级的自动优化等问题。
在Dryad编程模式中,应用程序的大规模数据处理被分解为多个步骤,并构成有向无环图形式的任务组织,由执行引擎去执行。这两种模式都提供了简单明了的编程方式,使得工程师能够很好地驾驭云计算处理平台,对大规模数据进行处理。Dryad的编程方式可适应的应用也更加广泛,通过DryadLINQ所提供的高级语言接口,使工程师可以快速进行大规模的分布式计算应用程序的编写。
Dryad技术的应用
云计算最重要的概念之~就是可伸缩性,实现它的关键是虚拟化。通过虚拟化可以在一台共享计算机上聚集多个 *** 作系统和应用程序,以便更好地利用服务器。当一个服务器负载超荷时,可以将其中一个 *** 作系统的一个实例(以及它的应用程序)迁移到一个新的,相对闲置的服务器上。虚拟化(Virtualization)是云计算的基石,企业实现私有云的第一步就是服务器基础架构进行虚拟化。基础设施虚拟化之后。接下来就是要将现有应用迁移到虚拟环境中。
Dryad结合Hyper-V(Windows Server 2008的一个关键组成部分)虚拟化技术。可以实现TB级别数据的在线迁移。中小型企业也可以针对企业内部小型集群服务器进行分布式应用系统编程,以及制定私有云开发与应用解决方案等设计。Windows Azure是微软的公有云解决方案,但是目前要大规模应用还为时过早。使用现有Windows第三方产品实现私有云,花费成本却很大。然而Dryad技术给我们带来了不错的折中选择,当我们基于Windows Server台运行应用系统或者网站时,便可以基于Dryad分布式架构来开发与设计实现。当公有云时机成熟和各种条件完备时,系统可以很轻易地升级到公有云,企业而无需花费太多成本。
写在最后
云计算可以看成是网络计算与虚拟化技术的结合,利用网络的分布式计算能力将各种IT资源筑成一个资源池,然后结合成熟的存储虚拟化和服务虚拟化技术,让用户实时透明地监控和调配资源。Dryad是实现构建微软云计算基础设施的重要核心技术之一,其具有诸多优点,如DryadLINQ具有声明式编程并将 *** 作的对象封装为,NET类数据,方便数据 *** 作,自动并行化、VisualStudio IDE和,NET类库集成,自动序列化和任务图的优化(静态和动态(主要通过DryadAPI实现)),对J0in进行了优化,得到了比BigTable+MapReduee更快的Join速率和更易用的数据 *** 作方式等。
不过,Dryad和DryadLINQ也同样具有局限性。其一,它更适用于批处理任务,而不适用于需要快速响应的任务;这个数据模型更适用于处理流式访问,而不是随机访问。其二,DryadLINQ使用的是,NET的LINO查询语言模型,针对运行Windows HPC Server的计算机集群设计,而目前高性能计算市场被Einux所占领。此外,和MapReduce的应用时间和实践相比,Dryad的可靠性还明显不足,据了解除了微软AdCenter中的数据分析和Trident项目之外,其它应用Dryad的地方还很少。不过总的来看,Dryad平台在将来仍具有很广泛的发展前景,尤其对NET开发人员来说是―次很重要的技术革新机遇。
名词解释
任务管理器(Job Manager,JM):每个Job的执行被一个Job Manager控制,该组件负责实例化这个Job的工作图,在计算机群上调度节点的执行;监控各个节点的执行情况并收集一些信息,通过重新执行来提供容错:根据用户配置的策略动态地调整工作图。
计算机群(Cluster):用于执行工作图中的节点。
命名服务器(Name Server,Ns):负责维护cluster中各个机器的信息。
维护进程(PDaemon,PD):进程监管与调度工作。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)