问题
我们有一个 SQL,用于找到没有主键 / 唯一键的表,但是在 MySQL 57 上运行特别慢,怎么办
实验
我们搭建一个 MySQL 57 的环境,此处省略搭建步骤。
写个简单的脚本,制造一批带主键和不带主键的表:
执行一下脚本:
现在执行以下 SQL 看看效果:
执行了 1680s,感觉是非常慢了。
现在用一下 DBA 三板斧,看看执行计划:
感觉有点惨,由于 information_schemacolumns 是元数据表,没有必要的统计信息。
那我们来 show warnings 看看 MySQL 改写后的 SQL:
我们格式化一下 SQL:
可以看到 MySQL 将
select from A where Ax not in (select x from B) //非关联子查询
转换成了
select from A where not exists (select 1 from B where Bx = ax) //关联子查询
如果我们自己是 MySQL,在执行非关联子查询时,可以使用很简单的策略:
select from A where Ax not in (select x from B where ) //非关联子查询:1 扫描 B 表中的所有记录,找到满足条件的记录,存放在临时表 C 中,建好索引2 扫描 A 表中的记录,与临时表 C 中的记录进行比对,直接在索引里比对,
而关联子查询就需要循环迭代:
select from A where not exists (select 1 from B where Bx = ax and ) //关联子查询扫描 A 表的每一条记录 rA: 扫描 B 表,找到其中的第一条满足 rA 条件的记录。
显然,关联子查询的扫描成本会高于非关联子查询。
我们希望 MySQL 能先"缓存"子查询的结果(缓存这一步叫物化,MATERIALIZATION),但MySQL 认为不缓存更快,我们就需要给予 MySQL 一定指导。
可以看到执行时间变成了 067s。
整理
我们诊断的关键点如下:
\1 对于 information_schema 中的元数据表,执行计划不能提供有效信息。
\2 通过查看 MySQL 改写后的 SQL,我们猜测了优化器发生了误判。
\3 我们增加了 hint,指导 MySQL 正确进行优化判断。
但目前我们的实验仅限于猜测,猜中了万事大吉,猜不中就无法做出好的诊断。
服务器放在局域网内进行测试时,数据库的访问速度还是很快。但当服务器放到外网后,数据库的访问速度就变得非常慢。后来在网上发现解决方法,myini里面添加
[mysqld]
skip-name-resolve
这样速度就快了!
skip-name-resolve
选项就能禁用DNS解析,连接速度会快很多。不过,这样的话就不能在MySQL的授权表中使用主机名了而只能用ip格式。
就MySQL本身而言,问题出在在mysql dns反解析
mysql>show processlist;
| 20681949 | unauthenticated user | 10104193:52497 | NULL | Connect | | Reading from net | NULL |
| 20681948 | unauthenticated user | 10104193:52495 | NULL | Connect | | Reading from net | NULL
发现有非常多的 unauthenticated user 尝试做登入使用 mysql 的情况 ,当这种情况无限制发生时就会造成系统十分缓慢。
查阅mysql官方网站得知,这属于官方一个系统上的特殊设定,就把他当成mysql的一个bug算了,不管链接的的方式是经过 hosts 或是 IP 的模式,他都会对 DNS 做反查。mysqld 会尝试去反查 IP -> dns ,由于反查解析过慢,就会无法应付过量的查询。mysql,配置文件配不对的话,性能就是会反而降低。如果是sqlserver,你最好看看内存,还有网卡的配置,也许机器不慢,但是网卡慢也说不定。
SQL语言,是结构化查询语言。SQL语言是一种数据库查询和程序设计语言,用于存取数据以及查询、更新和管理关系数据库系统,同时也是数据库脚本文件的扩展名。
SQL语言是高级的非过程化编程语言,允许用户在高层数据结构上工作。它不要求用户指定对数据的存放方法,也不需要用户了解具体的数据存放方式,所以具有完全不同底层结构的不同数据库系统可以使用相同的结构化查询语言作为数据输入与管理的接口。SQL语言语句可以嵌套,这使他具有极大的灵活性和强大的功能。感兴趣的话点击此处,了解一下
小编建议可以到亿万克官网了解相关内容,随着5G、AI、车联网、工业物联网等新兴技术的持续落地,亿万克将持续走在创新第一线,不断为客户提供更加优质服务,为国家信息安全和新型数据中心建设保驾护航,助力国家碳中和碳达峰步入新篇章。SQL提高查询效率
1对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num is null
可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
select id from t where num=0
3应尽量避免在 where 子句中使用!=或<> *** 作符,否则将引擎放弃使用索引而进行全表扫描。
4应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num=10 or num=20
可以这样查询:
select id from t where num=10
union all
select id from t where num=20
5in 和 not in 也要慎用,否则会导致全表扫描,如:
select id from t where num in(1,2,3)
对于连续的数值,能用 between 就不要用 in 了:
select id from t where num between 1 and 3
6下面的查询也将导致全表扫描:
select id from t where name like '%abc%'
若要提高效率,可以考虑全文检索。
7如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
select id from t where num=@num
可以改为强制查询使用索引:
select id from t with(index(索引名)) where num=@num
8应尽量避免在 where 子句中对字段进行表达式 *** 作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where num/2=100
应改为:
select id from t where num=1002
9应尽量避免在where子句中对字段进行函数 *** 作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where substring(name,1,3)='abc'--name以abc开头的id
select id from t where datediff(day,createdate,'2005-11-30')=0--‘2005-11-30’生成的id
应改为:
select id from t where name like 'abc%'
select id from t where createdate>='2005-11-30' and createdate<'2005-12-1'
10不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。
11在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。
12不要写一些没有意义的查询,如需要生成一个空表结构:
select col1,col2 into #t from t where 1=0
这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:
create table #t()
13很多时候用 exists 代替 in 是一个好的选择:
select num from a where num in(select num from b)
用下面的语句替换:
select num from a where exists(select 1 from b where num=anum)
14并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。
15索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。
16应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。
17尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。
18尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。
19任何地方都不要使用 select from t ,用具体的字段列表代替“”,不要返回用不到的任何字段。
20尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。
21避免频繁创建和删除临时表,以减少系统表资源的消耗。
22临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使用导出表。
23在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。
24如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。
25尽量避免使用游标,因为游标的效率较差,如果游标 *** 作的数据超过1万行,那么就应该考虑改写。
26使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。
27与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。
28在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息。
29尽量避免大事务 *** 作,提高系统并发能力。
30尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理
1、避免将字段设为“允许为空”
2、数据表设计要规范
3、深入分析数据 *** 作所要对数据库进行的 *** 作
4、尽量不要使用临时表
5、多多使用事务
6、尽量不要使用游标
7、避免死锁
8、要注意读写锁的使用
9、不要打开大的数据集
10、不要使用服务器端游标
11、在程序编码时使用大数据量的数据库
12、不要给“性别”列创建索引
13、注意超时问题
14、不要使用Select
15、在细节表中插入纪录时,不要在主表执行Select MAX(ID)
16、尽量不要使用TEXT数据类型
17、使用参数查询
18、不要使用Insert导入大批的数据
19、学会分析查询
20、使用参照完整性
21、用INNER JOIN 和LEFT JOIN代替Where
提高SQL查询效率(要点与技巧):
· 技巧一:
问题类型:ACCESS数据库字段中含有日文片假名或其它不明字符时查询会提示内存溢出。
解决方法:修改查询语句
sql="select from tablename where column like '%"&word&"%'"
改为
sql="select from tablename"
rsfilter = " column like '%"&word&"%'"
===========================================================
技巧二:
问题类型:如何用简易的办法实现类似百度的多关键词查询(多关键词用空格或其它符号间隔)。
解决方法:
'//用空格分割查询字符串
ck=split(word," ")
'//得到分割后的数量
sck=UBound(ck)
sql="select tablename where"
在一个字段中查询
For i = 0 To sck
SQL = SQL & tempJoinWord & "(" & _
"column like '"&ck(i)&"%')"
tempJoinWord = " and "
Next
在二个字段中同时查询
For i = 0 To sck
SQL = SQL & tempJoinWord & "(" & _
"column like '"&ck(i)&"%' or " & _
"column1 like '"&ck(i)&"%')"
tempJoinWord = " and "
Next
===========================================================
技巧三:大大提高查询效率的几种技巧
1 尽量不要使用 or,使用or会引起全表扫描,将大大降低查询效率。
2 经过实践验证,charindex()并不比前面加%的like更能提高查询效率,并且charindex()会使索引失去作用(指sqlserver数据库)
3 column like '%"&word&"%' 会使索引不起作用
column like '"&word&"%' 会使索引起作用(去掉前面的%符号)
(指sqlserver数据库)
4 '%"&word&"%' 与'"&word&"%' 在查询时的区别:
比如你的字段内容为 一个容易受伤的女人
'%"&word&"%' :会通配所有字符串,不论查“受伤”还是查“一个”,都会显示结果。
'"&word&"%' :只通配前面的字符串,例如查“受伤”是没有结果的,只有查“一个”,才会显示结果。
5 字段提取要按照“需多少、提多少”的原则,避免“select ”,尽量使用“select 字段1,字段2,字段3”。实践证明:每少提取一个字段,数据的提取速度就会有相应的提升。提升的速度还要看您舍弃的字段的大小来判断。
6 order by按聚集索引列排序效率最高。一个sqlserver数据表只能建立一个聚集索引,一般默认为ID,也可以改为其它的字段。
7 为你的表建立适当的索引,建立索引可以使你的查询速度提高几十几百倍。(指sqlserver数据库)
· 以下是建立索引与不建立索引的一个查询效率分析:
Sqlserver索引与查询效率分析。
表 News
字段
Id:自动编号
Title:文章标题
Author:作者
Content:内容
Star:优先级
Addtime:时间
记录:100万条
测试机器:P4 28/1G内存/IDE硬盘
=======================================================
方案1:
主键Id,默认为聚集索引,不建立其它非聚集索引
select from News where Title like '%"&word&"%' or Author like '%"&word&"%' order by Id desc
从字段Title和Author中模糊检索,按Id排序
查询时间:50秒
=======================================================
方案2:
主键Id,默认为聚集索引
在Title、Author、Star上建立非聚集索引
select from News where Title like '"&word&"%' or Author like '"&word&"%' order by Id desc
从字段Title和Author中模糊检索,按Id排序
查询时间:2 - 25秒
=======================================================
方案3:
主键Id,默认为聚集索引
在Title、Author、Star上建立非聚集索引
select from News where Title like '"&word&"%' or Author like '"&word&"%' order by Star desc
从字段Title和Author中模糊检索,按Star排序
查询时间:2 秒
=======================================================
方案4:
主键Id,默认为聚集索引
在Title、Author、Star上建立非聚集索引
select from News where Title like '"&word&"%' or Author like '"&word&"%'
从字段Title和Author中模糊检索,不排序
查询时间:18 - 2 秒
=======================================================
方案5:
主键Id,默认为聚集索引
在Title、Author、Star上建立非聚集索引
select from News where Title like '"&word&"%'
或
select from News where Author like '"&word&"%'
从字段Title 或 Author中检索,不排序
查询时间:1秒
· 如何提高SQL语言的查询效率
问:请问我如何才能提高SQL语言的查询效率呢?
答:这得从头说起:
由于SQL是面向结果而不是面向过程的查询语言,所以一般支持SQL语言的大型关系型数据库都使用一个基于查询成本的优化器,为即时查询提供一个最佳的执行策略。对于优化器,输入是一条查询语句,输出是一个执行策略。
一条SQL查询语句可以有多种执行策略,优化器将估计出全部执行方法中所需时间最少的所谓成本最低的那一种方法。所有优化都是基于用记所使用的查询语句中的where子句,优化器对where子句中的优化主要用搜索参数(Serach Argument)。
搜索参数的核心思想就是数据库使用表中字段的索引来查询数据,而不必直接查询记录中的数据。
带有 =、<、<=、>、>= 等 *** 作符的条件语句可以直接使用索引,如下列是搜索参数:
emp_id = "10001" 或 salary > 3000 或 a =1 and c = 7
而下列则不是搜索参数:
salary = emp_salary 或 dep_id != 10 或 salary 12 >= 3000 或 a=1 or c=7
应当尽可能提供一些冗余的搜索参数,使优化器有更多的选择余地。请看以下3种方法:
第一种方法:
select employeeemp_name,departmentdep_name from department,employee where (employeedep_id = departmentdep_id) and (departmentdep_code="01") and (employeedep_code="01");
它的搜索分析结果如下:
Estimate 2 I/O operations
Scan department using primary key
for rows where dep_code equals "01"
Estimate getting here 1 times
Scan employee sequentially
Estimate getting here 5 times
第二种方法:
select employeeemp_name,departmentdep_name from department,employee where (employeedep_id = departmentdep_id) and (departmentdep_code="01");
它的搜索分析结果如下:
Estimate 2 I/O operations
Scan department using primary key
for rows where dep_code equals "01"
Estimate getting here 1 times
Scan employee sequentially
Estimate getting here 5 times
第一种方法与第二种运行效率相同,但第一种方法最好,因为它为优化器提供了更多的选择机会。
第三种方法:
select employeeemp_name,departmentdep_name from department,employee where (employeedep_id = departmentdep_id) and (employeedep_code="01");
这种方法最不好,因为它无法使用索引,也就是无法优化……
使用SQL语句时应注意以下几点:
1、避免使用不兼容的数据类型。例如,Float和Integer,Char和Varchar,Binary和Long Binary不兼容的。数据类型的不兼容可能使优化器无法执行一些本可以进行的优化 *** 作。例如:
select emp_name form employee where salary > 3000;
在此语句中若salary是Float类型的,则优化器很难对其进行优化,因为3000是个整数,我们应在编程时使用30000而不要等运行时让DBMS进行转化。
2、尽量不要使用表达式,因它在编绎时是无法得到的,所以SQL只能使用其平均密度来估计将要命中的记录数。
3、避免对搜索参数使用其他的数学 *** 作符。如:
select emp_name from employee where salary 12 > 3000;
应改为:
select emp_name from employee where salary > 250;
4、避免使用 != 或 <> 等这样的 *** 作符,因为它会使系统无法使用索引,而只能直接搜索表中的数据。
· ORACAL中的应用
一个1600万数据表--短信上行表TBL_SMS_MO
结构:
CREATE TABLE TBL_SMS_MO
(
SMS_ID NUMBER,
MO_ID VARCHAR2(50),
MOBILE VARCHAR2(11),
SPNUMBER VARCHAR2(20),
MESSAGE VARCHAR2(150),
TRADE_CODE VARCHAR2(20),
LINK_ID VARCHAR2(50),
GATEWAY_ID NUMBER,
GATEWAY_PORT NUMBER,
MO_TIME DATE DEFAULT SYSDATE
);
CREATE INDEX IDX_MO_DATE ON TBL_SMS_MO (MO_TIME)
PCTFREE 10
INITRANS 2
MAXTRANS 255
STORAGE
(
INITIAL 1M
NEXT 1M
MINEXTENTS 1
MAXEXTENTS UNLIMITED
PCTINCREASE 0
);
CREATE INDEX IDX_MO_MOBILE ON TBL_SMS_MO (MOBILE)
PCTFREE 10
INITRANS 2
MAXTRANS 255
STORAGE
(
INITIAL 64K
NEXT 1M
MINEXTENTS 1
MAXEXTENTS UNLIMITED
PCTINCREASE 0
);
问题:从表中查询某时间段内某手机发送的短消息,如下SQL语句:
SELECT MOBILE,MESSAGE,TRADE_CODE,MO_TIME
FROM TBL_SMS_MO
WHERE MOBILE='130XXXXXXXX'
AND MO_TIME BETWEEN TO_DATE('2006-04-01','YYYY-MM-DD HH24:MI:SS') AND TO_DATE('2006-04-07','YYYY-MM-DD HH24:MI:SS')
ORDER BY MO_TIME DESC
返回结果大约需要10分钟,应用于网页查询,简直难以忍受。
分析:
在PL/SQL Developer,点击“Explain Plan”按钮(或F5键),对SQL进行分析,发现缺省使用的索引是IDX_MO_DATE。问题可能出在这里,因为相对于总数量1600万数据来说,都mobile的数据是很少的,如果使用IDX_MO_MOBILE比较容易锁定数据。
如下优化:
SELECT /+ index(TBL_SMS_MO IDX_MO_MOBILE) / MOBILE,MESSAGE,TRADE_CODE,MO_TIME
FROM TBL_SMS_MO
WHERE MOBILE='130XXXXXXXX'
AND MO_TIME BETWEEN TO_DATE('2006-04-01','YYYY-MM-DD HH24:MI:SS') AND TO_DATE('2006-04-07','YYYY-MM-DD HH24:MI:SS')
ORDER BY MO_TIME DESC
测试:
按F8运行这个SQL,哇~ 2360s,这就是差别。
>可以考虑做网站CDN防御,给网站做几个节点,主服务器起到跟数据库通信,以及为节点服务器提供数据的作用。节点服务器向不同网络及地区的终端客户提供网站数据。
智能解析:通过我们的智能解及析系统,可以准确的判断电信或联通线路,不同线路的用户可以解析到相应的节点上,我们各地部署的CDN节点很多,即使部分服务器故障或被攻击,也可以通过智能解析,解析到邻近的节点上,不会影响正常访问。而且,隐藏主服务器的IP地址,保护主服务器不被黑客入侵。
负载均衡:使各个节点流量相对比较平均,即使有攻击的时候也会分流到其他节点,不会因为某个节点出现很大流量影响其他服务器的正常运行,相对于处理攻击也有好处,只要把一些攻击策略加载到各个节点机房的防火墙上就可以自动处理攻击。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)