蓝海大脑的高性能服务器运用了哪些高科技?

蓝海大脑的高性能服务器运用了哪些高科技?,第1张

蓝海大脑作为NVIDIA英伟达的合作伙伴,一直专注于人工智能、大数据_数据挖掘、生命医药等领域,提供深度学习、高性能计算、虚拟化、分布式存储、AI集群管理、嵌入式平台等产品和整体解决方案,一直与众多高等院校人工智能学院和AI企业都保持十分紧密的合作关系,产品应用于深度学习、自动驾驶、视频编解码、视觉识别、智能教学、高性能计算实验室、高性能计算数据中心、大分子动力学,基因分析、医药研发、行为识别、生物分子研究、虚拟仿真、数字孪生等场景。感兴趣的话点击此处,免费了解一下

蓝海大脑是AI与HPC基础架构解决方案提供商,主营液冷GPU服务器、水冷工作站_GPU深度学习服务器、高性能服务器、显卡服务器、计算服务器、水冷服务器、边缘一体机等产品,适用于深度学习训练及推理等场景。结合人工智能、高性能计算、数据分析、云平台、分布式存储等技术,适用于深度学习、HPC、3D渲染、数据科学、医药研发、生命科学、小分子分析、机器学习、视觉识别等领域。

亿万克服务器售后服务覆盖全国大部分省市,他们要求24小时响应客户诉求。亿万克已经在服务器与存储设备领域深耕了整整26年。期间,亿万克为党政、金融、医疗、教育、电信、电力、交通和制造等多个行业和领域的客户在信息化发展和数字化转型中给予强大而安全的助力。

深度学习是机器学习的分支,是一种以人工神经网络为架构,对数据进行表征学习的算法。深度学习在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理等多个领域都取得了卓越的成果,可见其重要性

熟悉深度学习的人都知道,深度学习是需要训练的,所谓的训练就是在成千上万个变量中寻找最佳值的计算。这需要通过不断的尝试识别,而最终获得的数值并非是人工确定的数字,而是一种常态的公式。通过这种像素级的学习,不断总结规律,计算机就可以实现像人一样思考。因而,更擅长并行计算和高带宽的GPU,则成了大家关注的重点。

很多人认为深度学习GPU服务器配置跟普通服务器有些不一样,就像很多人认为做设计的机器一定很贵一样。其实只要显卡或者CPU满足深度学习的应用程序就可以进行深度学习。由于现在CPU的核心数量和架构相对于深度学习来说效率会比GPU低很多,所以大部分深度学习的服务器都是通过高端显卡来运算的。

这里谈谈关于深度学习GPU服务器如何选择,深度学习服务器的一些选购原则和建议:

1、电源:品质有保障,功率要足够,有30~40%冗余

稳定、稳定、还是稳定。一个好的电源能够保证主机再长时间运行不宕机和重启。可以想象一下,计算过程中突然重启,那么又要重来,除了降低效率,还影响心情。有些电源低负载使用的时候可能不出问题,一旦高负载运行的时候就容易出问题。选择电源的时候一定要选择功率有冗余品质过硬,不要功率刚刚好超出一点。

2、显卡:目前主流RTX3090,最新RTX4090也将上市

显卡在深度学习中起到很重要的作用,也是预算的一大头。预算有限,可以选择RTX3080 /RTX3090/RTX4090(上月刚发布,本月12日上市)。预算充足,可以选择专业深度学习卡Titan RTX/Tesla V100 /A6000/A100/H100(处于断供中)等等。

3、CPU:两家独大,在这要讲的是PC级和服务器级别处理器的定位

Intel的处理器至强Xeon、酷睿Core、赛扬Celeron、奔腾Pentium和凌动Atom5个系列,而至强是用于服务器端,目前市场上最常见的是酷睿。当下是第三代Xeon Scalable系列处理器,分为Platinum白金、Gold金牌、 Silver 银牌。

AMD处理器分为锐龙Ryzen、锐龙Ryzen Pro、锐龙线程撕裂者Ryzen Threadripper、霄龙EPYC,其中霄龙是服务器端的CPU,最常见的是锐龙。当下是第三代 EPYC(霄龙)处理器 ,AMD 第三代 EPYC 7003 系列最高 64核。

选择单路还是双路也是看软件,纯粹的使用GPU运算,其实CPU没有多大负载。考虑到更多的用途,当然CPU不能太差。主流的高性能多核多线程CPU即可。

4、内存:单根16G/32G/64G 可选,服务器级别内存有ECC功能,PC级内存没有,非常重要

内存32G起步,内存都是可以扩展的,所以够用就好,不够以后可以再加,买多了是浪费。

5、硬盘:固态硬盘和机械硬盘,通常系统盘追求速度用固态硬盘,数据盘强调存储量用机械盘

固态选择大品牌企业级,Nvme或者SATA协议区别不大,杂牌固态就不要考虑了,用着用着突然掉盘就不好了。

6、机箱平台:服务器级别建议选择超微主板平台,稳定性、可靠性是第一要求

预留足够的空间方便升级,比如现在使用单显卡,未来可能要加显卡等等;结构要合理,合理的空间更利于空气流动。最好是加几个散热效果好的机箱风扇辅助散热。温度也是导致不稳定的一个因素。

7、软硬件支持/解决方案:要有

应用方向:深度学习、量化计算、分子动力学、生物信息学、雷达信号处理、地震数据处理、光学自适应、转码解码、医学成像、图像处理、密码破解、数值分析、计算流体力学、计算机辅助设计等多个科研领域。

软件: Caffe, TensorFlow, Abinit, Amber, Gromacs, Lammps, NAMD, VMD, Materials Studio, Wien2K, Gaussian, Vasp, CFX, OpenFOAM, Abaqus, Ansys, LS-DYNA, Maple, Matlab, Blast, FFTW, Nastran等软件的安装、调试、优化、培训、维护等技术支持和服务。

————————————————

版权声明:本文为CSDN博主「Ai17316391579」的原创文章,遵循CC 40 BY-SA版权协议,转载请附上原文出处链接及本声明。

原文链接:>

外观小巧,却具备极致AI性能,可容纳2个 T4
GPU卡,提供最大每秒260万亿次的AI算力,单机可处理80路摄像头接入数据,灵活应对各类AI推理任务。然后,浪潮服务NE3160M5还支持电信级抗震防尘,适应边缘严苛环境,运行噪音低,可在通信机房或室内场景直接部署,为不同边缘场景提供灵活、强大的边缘算力。
亿万克是个做服务器很好的公司,买服务器比较推荐亿万克,有兴趣可以去官网了解一下。亿万克集服务器和存储等数据中心产品的研发、生产、销售、服务系统整合于一体,是民族高科技制造企业领导品牌 。

亿万克亚当G852N5基于英特尔至强处理器平台开发,4U机架式设计,具备海量存储空间、高性能计算特性及灵活的IO扩展能力,是兼备训练与推理功能的全能型GPU服务器,支持多达8个训练GPU或16个推理GPU,适用于HPC、大数据分析、3D图形应用程序、视频编解码、深度学习和科学计算等场景应用。感兴趣请点击此处,了解一下。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/13408328.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-07-30
下一篇 2023-07-30

发表评论

登录后才能评论

评论列表(0条)

保存