硬盘
硬盘的功耗比较小,往往容易被忽略,但是对于目前主流的存储服务器,4U能到60+以上的盘位,具体参数可参考一下表格:
GPU卡、RAID卡、网卡
其中主要占功耗的部件是GPU卡,部分高性能的GPU卡功能最高能达到350W,越往后升级,功能会越高,项目前主流的GPU服务器,如果按照10张来计算,就是3500W,极有可能会超过服务器的整体功率而导致供电不足的风险,具体参数可参考下表:
风扇、主板
风扇的转速和尺寸不同,对应的功能也不同,主板功耗主要根据服务器是单路,双路,四路和八路为主,不同的类型功耗不同,主要在40W-160W之间一般来说深度学习服务器可以分为很多类型的,在选择GPU服务器的时候,首先要想你需要在深度学习服务器上干什么⌄如果需要的业务访问量不大的话可以考虑一下基础的高性能服务器。如果是一些高性能计算或者是高配置的视觉计算服务器,那质量方面要求就更高了,而且价格方面也会相对昂贵一点。蓝海大脑你可以去看看,不管是一般配置的还是高配置的液冷服务器他家都有,可以量身定制。可从性能、可编程性、灵活性等方面对CPU、GPU、FPGA等不同类型的服务器进行系统的对比分析比较,我们可以从考虑业务应用先选择GPU型号;考虑服务器的使用场景及数量;考虑客户自身的目标使用人群及IT运维能力;考虑服务器配套软件的价值及服务的价值;考虑整体GPU集群系统的成熟度及工程效率。在选择GPU服务器的时候,你可以从这些方面了解看看。英伟达在国内外的口碑都是挺不错的,或者找英伟达授权的代理商也是可以的。思腾合力你可以看看,它也是英伟达精英级的合作伙伴,是我们公司一直在合作的厂商,服务还是非常好的,而且性能、质量方面都没有出现过问题。
说到显卡,估计90%以上的人都认为这就是一个游戏工具。现在高性能的显卡难道只是为游戏而生吗?目前不少公司已经认识到GPU大规模并行计算带来的优势,开始用强大的多GPU服务器进行各种方向的研究,而这些研究除了能给公司带来巨大收益外,其研究成果也开始应用在我们的日常生活中。
什么是GPU服务器?
GPU服务器是基于GPU的应用于视频编解码、深度学习、科学计算等多种场景的快速、稳定、d性的计算服务。
GPU服务器有什么作用?
GPU 加速计算可以提供非凡的应用程序性能,能将应用程序计算密集部分的工作负载转移到 GPU,同时仍由 CPU 运行其余程序代码。从用户的角度来看,应用程序的运行速度明显加快
理解 GPU 和 CPU 之间区别的一种简单方式是比较它们如何处理任务。CPU 由专为顺序串行处理而优化的几个核心组成,而 GPU 则拥有一个由数以千计的更小、更高效的核心(专为同时处理多重任务而设计)组成的大规模并行计算架构。
GPU服务器的主要应用场景
海量计算处理
GPU 服务器超强的计算功能可应用于海量数据处理方面的运算,如搜索、大数据推荐、智能输入法等:
• 原本需要数天完成的数据量,采用 GPU 服务器在数小时内即可完成运算。
• 原本需要数十台 CPU 服务器共同运算集群,采用单台 GPU 服务器可完成。
深度学习模型
GPU服务器可作为深度学习训练的平台:
1GPU 服务器可直接加速计算服务,亦可直接与外界连接通信。
2GPU 服务器和云服务器搭配使用,云服务器为 GPU 云服务器提供计算平台。
3对象存储 COS 可以为 GPU 服务器提供大数据量的云存储服务。
如何正确选择GPU服务器
选择GPU服务器时首先要考虑业务需求来选择适合的GPU型号。在HPC高性能计算中还需要根据精度来选择,比如有的高性能计算需要双精度,这时如果使用P40或者P4就不合适,只能使用V100或者P100;同时也会对显存容量有要求,比如石油或石化勘探类的计算应用对显存要求比较高;还有些对总线标准有要求,因此选择GPU型号要先看业务需求。
当GPU型号选定后,再考虑用什么样GPU的服务器。这时我们需要考虑以下几种情况:
第一、 在边缘服务器租用上需要根据量来选择T4或者P4等相应的服务器,同时也要考虑服务器的使用场景,比如火车站卡口、机场卡口或者公安卡口等;在中心端做Inference时可能需要V100的服务器,需要考虑吞吐量以及使用场景、数量等。
第二、 需要考虑客户本身使用人群和IT运维能力,对于BAT这类大公司来说,他们自己的运营能力比较强,这时会选择通用的PCI-e服务器;而对于一些IT运维能力不那么强的客户,他们更关注数字以及数据标注等,我们称这类人为数据科学家,选择GPU服务器的标准也会有所不同。
第三、 需要考虑配套软件和服务的价值。
第四、 要考虑整体GPU集群系统的成熟程度以及工程效率,比如像DGX这种GPU一体化的超级计算机,它有非常成熟的从底端的 *** 作系统驱动Docker到其他部分都是固定且优化过的,这时效率就比较高。
作为国内品牌服务器提供商,天下数据GPU机架式服务器拥有大规模并行处理能力和无与伦比的灵活性。它主要应用于为计算密集型应用提供足够的处理能力。GPU加速运算的优势就在于它可以一边由CPU运行应用程序代码,一边由图形处理单元(GPU)处理大规模并行架构的计算密集型任务。天下数据GPU服务器是医疗成像、广播、视频转码市场的理想选择。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)