数字芯片是半导体行业里市场空间最大,技术壁垒最高的赛道。之前我们分析过的那些尖端设备和材料,主要都是为数字芯片打造的。
目前芯片设计这些赛道里,IGBT和模拟芯片领域都有IDM厂商,但数字芯片很少有做全产业链的,大家专注于自己的环节,分工合作。
这是因为IGBT和模拟芯片虽然技术和资金壁垒也很高,但生命周期长。数字芯片的发展却遵循摩尔定律,不但研发需要大量资金,晶圆代工需要大量资本购买设备,迭代又非常快。
等你把这一代产品全都配置好了,人家下一代产品又出来了,还得接着追,这就是数字芯片最难的地方。
数字芯片的工作原理简单来说就是通过晶体管控制电流的“开”和“关”,来表达数据信息的“1”和“0”,或者逻辑判断的“是”与“非”,所以数字电路也称开关电路或逻辑电路。
其组成主要就是工作在开关状态的晶体管,所以数字芯片的规模大小由其中的晶体管数量决定,摩尔定律说的也是每隔18个月晶体管数量增加一倍,因此晶体管数量对数字芯片性能起决定性作用。
数字芯片包含七种类别,分别是逻辑电路、通用处理器、存储器、单片系统SoC、微控制器MCU、定制电路ASIC和可编程逻辑器件。将来我们会对其中主要类别进行逐个分析。
简单的逻辑电路通常由门电路构成,基本是由与门、或门和非门电路排列组合而成,这些系列的电路也称为组合逻辑电路。
数量庞大的逻辑电路芯片经过不同的排列组合,理论上可以处理非常复杂的控制和运算问题。
但当下的芯片集成度很高,许多自成系统的逻辑电路可以集成在芯片内部,一个芯片就可以实现复杂的功能,也就没人愿意用大量小芯片去实现一个大系统。
所以目前逻辑电路芯片仅用于小型电子产品中,以及在大系统的通用大芯片之间的连接电路上。
通用处理器一般指服务器用和桌面计算用的CPU芯片,也包括GPU、DSP、APU等。
它是规模最大、结构最复杂的一类数字电路芯片,由海量逻辑电路组成,包含了控制、存储、运算、输入输出等完整的数据和信息处理系统,这次我们先分析CPU这一细分领域。
01 什么是CPU
CPU也叫中央处理器,是计算机的运算和控制中心,主要功能是完成计算机指令的执行和数据处理,因此CPU与内部存储器、输入输出设备被认为是计算机三大核心部件。
控制单元是CPU的控制中心,当下达指令时,控制单元负责将存储器中的数据发送至运算单元并将运算后的结果存回存储器中。
运算单元负责执行控制单元的命令,进行算术运算和逻辑运算。
存储单元是CPU中数据暂时存储的位置,其中寄存有待处理或者处理完的数据。寄存器相比内存可以减少CPU访问数据的时间,也可以减少CPU访问内存的次数,有助于提高CPU的工作速度。
按照处理信息的字长,CPU可分为四位微处理器、八位微处理器、十六位微处理器、三十二位微处理器以及六十四位微处理器等,后续还在不断拓展。
CPU作为集成电路的一部分,现在全球集成电路市场受益于5G、可穿戴设备和云服务等应用领域发展,依旧在稳步增长。
中国是全球最大的集成电路市场,增速也是全球最快,2012-2020年九年间集成电路产业市场规模复合增长率达到1681%。
集成电路进出口市场上,我国存在较大逆差,而且逆差还在拉大,国产化替代空间广阔。
CPU的下游市场涵盖服务器、桌面端、移动 PC端、智能手机以及物联网、人工智能、 汽车 电子、智能穿戴等新兴应用领域。
目前桌面端和移动PC端发展平缓,服务器受益于云化趋势增速较快,智能手机受益于5G换机潮迎来一波周期性机会,行业中长期发展还得看那些新兴领域,但新兴领域并不完全是CPU的增量市场,比如新能源 汽车 。
目前全球新能源 汽车 销量持续增长, 汽车 三化(电动化、智能化、共享化)势不可挡,电子成本占总成本的比率逐步提升,发展空间很大,2021年全球 汽车 芯片市场规模预计可达到440亿美元。
按应用场景划分,车用计算芯片可以划分为智能座舱芯片和自动驾驶芯片、车身控制芯片。
由于单纯一个的CPU已经无法满足智能 汽车 的算力要求,将CPU与GPU、FPGA、ASIC等通用或专用芯片异构融合的SoC方案成了各大AI芯片厂商算力竞争的主赛道。
不仅智能 汽车 ,在物联网和人工智能等领域,传统CPU也出现了不能适应市场要求的情况。
随着物联网设备灵活性要求日益提高,芯片向低功耗、高性能方向发展,MCU和SoC脱颖而出。
人工智能常用的AI芯片通常是针对人工智能算法做了特定加速设计的芯片,如GPU、FPGA、ASIC和神经拟态芯片。
虽然深度学习算法上CPU不如AI芯片,但做大规模推理,CPU比较有优势,再加上CPU优势领域的市场空间广阔,应用场景丰富,国内 科技 企业持续研发国产CPU依然势在必行。
目前CPU主要市场份额仍在海外企业手中。随着国内技术进步,国内CPU也在变得更好用,再加上政策持续加码,国产替代确定性较高。
02 CPU芯片架构
芯片架构也叫指令集架构,简单来说就是芯片的执行流程,不同指令集架构的芯片就是执行步骤的不同。
目前CPU指令集架构主要分为复杂指令集(CISC)和精简指令集(RISC)两大类。
复杂指令集支持的指令更多,每种运算都有自己的完整指令。由于只有少部分指令会反复使用,精简指令集就是对其进行精简,不用每种运算都有完整指令。
复杂指令集更适用于运算复杂的电脑CPU,精简指令集更适用于运算要求较低,功耗也较低的手机CPU。
在这两种指令集基础上又产生了不同的架构,也就是在指令集基础上实现对CPU内的控制单元、运算单元、存储单元等部件的一系列完整设计和安排。
03 X86架构
CISC的架构主要就是X86架构,目前Intel和AMD两家独大。
Intel和Windows组成了“Wintel”联盟,击败了苹果、IBM、摩托罗拉的Power联盟,垄断桌面市场长达20多年。直到目前,服务器、桌面和移动PC主要使用的还是X86架构处理器,Intel依然占据大部分市场。
后来随着AMD第二代Epyc处理器“罗马”问世,AMD服务器CPU市占率在短短两年内从1%增长到了8%。接着第三代Epyc处理器“米兰”发布,其服务器市场份额有望达到15%。
由于AMD服务器芯片性价比较高,又有台积电7nm制程技术加成,越来越多数据中心开始采购AMD的产品。
X86架构之所以覆盖范围这么广,除了起步早、性能高、兼容性好之外,还跟它生态完善有关,目前全球65%以上的软件开发商都为X86提供服务,你想自己设计一个架构,没有生态也就没有人使用。
现在X86架构在中国市场依然广阔,尤其是在服务器领域具有绝对优势,几乎占据全部服务器销量。其他非X86架构的服务器占比很小,主要都是ARM架构。
除了Intel和AMD双寡头以外,国内还有兆芯、海光和MPRC几家X86芯片商。目前X86架构的国产化替代还不太明显,兆芯2019年市占率仅01%。
04 ARM架构
RISC的架构有ARM、MIPS、Power PC、Alpha、RISC–V等。
如今超过90%的智能手机采用ARM架构,MIPS在嵌入式设备中应用广泛,而且随着性能提升,技术层面的融合,RISC架构也在不断向X86的应用领域渗透。
ARM架构由于具有成本低、功耗低、体积小、性能高等特点,非常适用移动通讯领域,在智能手机、调制解调器、车载信息设备、可穿戴设备等领域都占据绝对统治地位。
目前ARM架构是非X86架构中应用最广泛,发展最成熟的架构,市占率达到了432%。
ARM完整产品线包括微控制器、微处理器、圆形处理器、实现软件、单元库、嵌入式内存、高速连接产品、外设以及开发工具。
目前国内外主要ARM厂商有ARM、联发科、高通Qualcomm、苹果、三星电子,飞腾、华为鲲鹏、展讯SPREAD TRUM。
世界各大半导体生产商从ARM公司购买其设计的ARM微处理器核,根据各自不同的应用领域,加入适当的外围电路,从而形成自己的ARM微处理器芯片进入市场。
联发科是世界上最大的ARM手机芯片供应商,苹果、三星、高通等行业巨头均在最近几年使用ARM架构,逐步实现基于ARM的全生态链。
截至2021Q1,联发科和高通是最主要的手机CPU供应商,市场份额分别为35%和29%,同比分别增长11%和-2%。
苹果市占率为17%,三星降至9%,华为海思由于受到美国升级制裁的影响,市场份额快速下滑,降至5%。
服务器方面,非X86目前参与者包括华为、飞腾、高通、亚马逊等。
华为鲲鹏服务器是ARM服务器的重要参与者,据华为称,鲲鹏出货量已占据市场50%,未来有望发挥其在移动市场的优势,借力云端协同,抢占服务器市场更多份额。
在桌面PC市场,ARM正逐渐被更多企业应用,2011年微软开始采用ARM的Windows系统,ARM开始进入X86的传统优势领域,如今苹果MacOS、新版Windows等均采用了ARM架构。
此外,ARM在物联网、 汽车 等领域均有很大发展潜质。ARM在公共事业、智慧城市、资产管理等领域均提供了解决方案。
05 MIPS等架构
MIPS、Alpha、Power等架构已经不是市场主流应用,但在特定领域内仍在被使用。
MIPS架构是一种简洁、优化、具有高度扩展性的RISC架构,能够提供最高的每平方毫米性能和当今SoC设计中最低的能耗,已经在移动和嵌入式工业领域销售了近三十年,目前市占率9%。
MIPS多线程CPU已经广泛应用于不同领域,以及许多移动设备的LTE调制解调器中。
国内外主要MIPS芯片商主要有MIPS公司、Ikanos、龙芯中科、北京君正。不过MIPS公司两度易主后,新公司已经转向RISC-V。
龙芯和申威分别获得MIPS及Alpha永久授权发展自主指令集,我国企业成为了该架构应用产品研发和全球生态构建的单一力量,应用的也都是国家非常注重安全的领域。
Power架构在相关市场的占有率也不过1%左右,但在高性能计算领域一直拥有相当重要的地位,其一些技术特性甚至可与Intel一较高下,然而市场参与者基本只有IBM。
06 RISC-V架构
RISC–V是目前业内最被看好,最有机会弯道超车的新架构,具有完全开源、架构简单、易于移植,适用于各种设备、完整工具链, 运行效率高等特点。
这种架构目前接受度逐渐提高,有望成为继X86和ARM架构之后第三大主流指令集架构。
由于RISC-V基金会为非盈利会员制组织,所以RISC-V本身是免费的,自 RISC-V 基金会于 2015 年成立以来,RISC-V 生态系统经历了爆炸式增长,2020年成员增长率达到133%。
物联网的兴起为上游产业链提供新的成长潜力,由于RISC-V具备开源等特性,与物联网更灵活和多样的要求相吻合。
而且自中美贸易战以来,中国企业存在受制于美国不能升级架构的风险,随着RISC-V逐渐被接受,为我国芯片厂商通过RISC-V架构实现独立自主提供可行性。
Semico Research 预测,到 2025 年,市场将消耗 624 亿个 RISC-V CPU 内核,2018-2025 年复合年增长率为 1462%。其中工业领域将以使用超过167亿个内核遥遥领先。
市场研究公司Tractica也预测,RISC- V的IP和软件工具市场在2018年为5200万美元,到2025年时将增长至 11亿美元。
目前RISC-V发展时间较短,尚未一家独大,相关生态还在发展。
短期内ARM架构依然会占据中高端市场,RISC-V主要在一些碎片化的新兴市场展开应用,如物联网的轻终端场景。
这些场景需要低功耗低成本,但是往往程序不用大改、对软件生态的依赖性不高、出货量又很大,符合RISC-V阶段性的发展目标。
RISC-V允许任何厂商设计、制造和销售RISC-V芯片和软件,因此吸引了大批 科技 公司入场。
GreenWaves、IBM、NXP、西部数据、英伟达、高通、三星、谷歌、华为、晶心 科技 、芯源股份、芯来 科技 、阿里平头哥、中天微、Red Hat 与特斯拉等100 多家 科技 公司加入其阵营。
07 国产CPU自主可控程度
国产CPU经历了将近20年的发展,也产生了一批有实力的企业,如前面提到的中科龙芯、天津飞腾、海光信息、上海申威、上海兆芯等。
这其中申威和龙芯自主可控程度最高。上海申威主要从事Alpha架构的研发,它是目前创新可信度最高的国产CPU厂商,基本实现完全自主可控,主供党政办公、军方和超算领域。
其次是飞腾和华为鲲鹏(海思)为代表的ARM架构国产厂商。ARM架构需要有ARM公司授权,主要有三种授权等级:使用层级授权、内核层级授权和架构/指令集层级授权。
其中指令集层级授权等级最高,企业可以对ARM指令集进行改造以实现自行设计处理器,目前海思、飞腾已经获得ARMV8永久授权。
如果他们基于V8授权发展出自己的指令集,其创新可信程度将显著提升,即使未来拿不到V9V10等新架构授权,依然可以维持先进性。
最后是海光和兆芯为代表的X86厂商,仅获得内核层级的授权,未来扩充指令集形成自主可控指令集难度较大。
从2017年Zen架构处理器问世开始,随着AMD的锐龙Ryzen、EPYC霄龙处理器上市,Zen架构产品的路线图节奏也越发稳定。第三代锐龙Ryzen处理器在7月7日上市销售,采用台积电7nm工艺和新一代的Zen 2架构。从研发角度来看,7nm工艺的Zen2架构已经完成 历史 使命。AMD下一代的Zen 3将会在2020年推出,采用7nm EUV的制程工艺。目前,关于第四代7nm+的Zen 3处理器会有哪些特点,但桌面版8-16核、服务器最多64核的架构设计应该不会变。此外,7nm +的Zen 3处理器的新技术支持应该不会有多大的变化,因为AMD承诺2020年的桌面级处理器依然采用AM4接口、服务器版继续兼容SP3插槽。
虽然7nm+的桌面版Zen3处理器还没有公布代号,但是AMD已经确定EPYC服务器产品的代号为米兰,是那不勒斯、罗马之后的第三个意大利城市。
按照AMD CTO Mark Papermaster在2018年年底的说法,Zen 3架构的设计目标是能效优先,并将能效拿出最佳的IPC(每时钟周期指令集)增幅。台积电表示7nm+工艺将提升20%的晶体管密度,相同负载下功耗降低10%。
AMD高级副总裁、数据中心与嵌入式解决方案事业部总经理Forrest Norrod不久接受采访时同样表示:第一、二、三代的Zen架构都将保持兼容,而DDR5内存需要不同的设计,所以需要更新处理器插槽实现,最快能够支持DDR5的将会是2021年的Zen 4架构“热那亚”。
amd霄龙7763配H11DSi主板。
H11DSi主板支持双路AMD EPYC(霄龙)处理器,是不支持1950X处理器的,目前只有X399单路主板可以用1950X处理器,H11DSi主板可以支持,32核心64线程,型号EPYC 7601,频率22-32GHz。
MZ31-AR0为技嘉主板,并非华硕主板。这个主板为技嘉服务器平台主板,支持Socket SP3接口的AMD EPYC 7001系列处理器。最高支持32核心、64线程,TDP 200W的处理器,可以支持的型号如:霄龙7601、霄龙7551、霄龙7501、霄龙7451、霄龙7351等等。
程序服务处理和硬件中断处理:
这两部分是两个独立的内容,但在使用上密切相关。程序服务处理程序主要是为应用程序和 *** 作系统服务,这些服务主要与输入输出设备有关,例如读磁盘、文件输出到打印机等。为了完成这些 *** 作,BIOS必须直接与计算机的I/O设备打交道。
它通过端口发出命令,向各种外部设备传送数据以及从它们那儿接收数据,使程序能够脱离具体的硬件 *** 作,而硬件中断处理则分别处理PC机硬件的需求,因此这两部分分别为软件和硬件服务,组合到一起,使计算机系统正常运行。
不可以。作为游戏CPU来用,不好主频相对低,Zen架构是基于CCX模块化设计,每个模块4个核心,桌面上的Ryzen使用两个CCX模块组成8核心,而服务器上的EPYC则是以8核心模块为基础,可以看出内存延迟非常高,对游戏不利。玩游戏我推荐骁龙845,锐龙系列的cpu都适合。可以多开。那台服务器是Dell R7525,用了2块AMD EPYC 7763处理器,该处理器有64个核心128个线程,基础频率245GHz,最大加速频率35GHz,内存是32根64GB的ECC内存,合计就是2TB内存,硬盘方面,启动盘是 Intel Optane P5800X,这个硬盘的读写速度能够达到每秒74个G,存储盘用了两种,一种三星PM1643,单个容量30TB,用了16个,另一种是三星PM1733 ,单个容量15TB,用了4个,显卡是3张RTX 3090。
看完这个配置,只能说真豪,这些硬件算下来价格应该超过100万了,其中处理器部分要10几万,存储部分应该要六十多万了,内存应该也要十来万了,显卡和服务器反而显得便宜了,此外还没有说专线宽带方面的花费。
那么这个服务器和我们普通使用的电脑有什么区别呢?其实我们看看CPU大概就知道了,AMD EPYC 7763这款处理器的核心数量虽然很多,但是我们发现它的频率并不高,最高加速频率才35GHz,而普通桌面处理器的频率是很容易上4GHz的,而这个也是桌面平台唯一的优势了吧。
其他方面好像就没得比了,在IO部分,服务器无疑是吊打桌面平台,服务器平台的内存通道更多,支持更高的内存容量,桌面现在还是双通道内存,服务器上面早就8通道了,服务器平台支持的PCI-E数量也更多,在稳定性上面,服务器也会更稳定。
总之服务器往往会有更多的核心数量,更强的IO性能,更强的稳定性,但是这种产品不一定适合普通用户,因为服务器的CPU主频往往更低,这对于 游戏 玩家来说,显然影响会比较大,而且服务器的噪音也比较大,所以并不适合家用,对于这种顶尖的服务产品,大家看看就好。
为啥不直接搞个超级电脑?
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)