不知道你用的是什么圈地插件,不过设置里都差不多
我用Residence圈地插件举个栗子0w0~
中间我画红框这里就是限制玩家最大圈地范围的
如果是op的话,或者再装了ess插件(groupmanager)之后,op圈地想不花钱或者没有限制
在/res命令后面+admin,比如/resadmin create xxxx
选择方法是一样的
还是拿这个插件举栗子0w0~
op圈地不需要那么麻烦,不需要点对角线的两个点,即使2个选择点不是预期的对角顶点也没关系,选择完成后输入/resadmin select vert (选择2点之间的Z轴为最大即255)
然后再/resadmin create xxxx 就可以了,而且不花钱
/resadmin +xxxx命令不受普通限制的,即使配置文件里限制为默认的32x32x255 ,op也可以使用这个命令强行圈更大的区域,不受限制的
有不会的再留言问我
支持向量机原理SVM简介支持向量机(support vector machines, SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性分类器。SVM的的学习策略就是间隔最大化,可形式化为一个求解凸二次规划的问题,也等价于正则化的合页损失函数的最小化问题。SVM的的学习算法就是求解凸二次规划的最优化算法。
SVM算法原理
SVM学习的基本想法是求解能够正确划分训练数据集并且几何间隔最大的分离超平面。如下图所示, \boldsymbol{w}\cdot x+b=0 即为分离超平面,对于线性可分的数据集来说,这样的超平面有无穷多个(即感知机),但是几何间隔最大的分离超平面却是唯一的。
在推导之前,先给出一些定义。假设给定一个特征空间上的训练数据集
T=\left\{ \left( \boldsymbol{x}_1,y_1 \right) ,\left( \boldsymbol{x}_2,y_2 \right) ,,\left( \boldsymbol{x}_N,y_N \right) \right\}
其中, \boldsymbol{x}_i\in \mathbb{R}^n , y_i\in \left\{ +1,-1 \right\} ,i=1,2,N , x_i 为第 i 个特征向量, y_i 为类标记,当它等于+1时为正例;为-1时为负例。再假设训练数据集是线性可分的。
几何间隔:对于给定的数据集 T 和超平面 w\cdot x+b=0 ,定义超平面关于样本点 \left( x_i,y_i \right) 的几何间隔为
\gamma _i=y_i\left( \frac{\boldsymbol{w}}{\lVert \boldsymbol{w} \rVert}\cdot \boldsymbol{x}_{\boldsymbol{i}}+\frac{b}{\lVert \boldsymbol{w} \rVert} \right)
超平面关于所有样本点的几何间隔的最小值为
\gamma =\underset{i=1,2,N}{\min}\gamma _i
实际上这个距离就是我们所谓的支持向量到超平面的距离。
根据以上定义,SVM模型的求解最大分割超平面问题可以表示为以下约束最优化问题
\underset{\boldsymbol{w,}b}{\max}\ \gamma
st\ \ \ y_i\left( \frac{\boldsymbol{w}}{\lVert \boldsymbol{w} \rVert}\cdot \boldsymbol{x}_{\boldsymbol{i}}+\frac{b}{\lVert \boldsymbol{w} \rVert} \right) \ge \gamma \ ,i=1,2,,N
将约束条件两边同时除以 \gamma ,得到
y_i\left( \frac{\boldsymbol{w}}{\lVert \boldsymbol{w} \rVert \gamma}\cdot \boldsymbol{x}_{\boldsymbol{i}}+\frac{b}{\lVert \boldsymbol{w} \rVert \gamma} \right) \ge 1
因为 \lVert \boldsymbol{w} \rVert \text{,}\gamma 都是标量,所以为了表达式简洁起见,令
\boldsymbol{w}=\frac{\boldsymbol{w}}{\lVert \boldsymbol{w} \rVert \gamma}
b=\frac{b}{\lVert \boldsymbol{w} \rVert \gamma}
得到
y_i\left( \boldsymbol{w}\cdot \boldsymbol{x}_{\boldsymbol{i}}+b \right) \ge 1,\ i=1,2,,N
又因为最大化 \gamma ,等价于最大化 \frac{1}{\lVert \boldsymbol{w} \rVert} ,也就等价于最小化 \frac{1}{2}\lVert \boldsymbol{w} \rVert ^2 ( \frac{1}{2} 是为了后面求导以后形式简洁,不影响结果),因此SVM模型的求解最大分割超平面问题又可以表示为以下约束最优化问题
\underset{\boldsymbol{w,}b}{\min}\ \frac{1}{2}\lVert \boldsymbol{w} \rVert ^2
st\ \ y_i\left( \boldsymbol{w}\cdot \boldsymbol{x}_{\boldsymbol{i}}+b \right) \ge 1,\ i=1,2,,N
这是一个含有不等式约束的凸二次规划问题,可以对其使用拉格朗日乘子法得到其对偶问题(dual problem)。
首先,我们将有约束的原始目标函数转换为无约束的新构造的拉格朗日目标函数
L\left( \boldsymbol{w,}b,\boldsymbol{\alpha } \right) =\frac{1}{2}\lVert \boldsymbol{w} \rVert ^2-\sum_{i=1}^N{\alpha _i\left( y_i\left( \boldsymbol{w}\cdot \boldsymbol{x}_{\boldsymbol{i}}+b \right) -1 \right)}
其中 \alpha _i 为拉格朗日乘子,且 \alpha _i\ge 0 。现在我们令
\theta \left( \boldsymbol{w} \right) =\underset{\alpha _{_i}\ge 0}{\max}\ L\left( \boldsymbol{w,}b,\boldsymbol{\alpha } \right)
当样本点不满足约束条件时,即在可行解区域外:
y_i\left( \boldsymbol{w}\cdot \boldsymbol{x}_{\boldsymbol{i}}+b \right) <1
此时,将 \alpha _i 设置为无穷大,则 \theta \left( \boldsymbol{w} \right) 也为无穷大。
当满本点满足约束条件时,即在可行解区域内:
y_i\left( \boldsymbol{w}\cdot \boldsymbol{x}_{\boldsymbol{i}}+b \right) \ge 1
此时, \theta \left( \boldsymbol{w} \right) 为原函数本身。于是,将两种情况合并起来就可以得到我们新的目标函数
\theta \left( \boldsymbol{w} \right) =\begin{cases} \frac{1}{2}\lVert \boldsymbol{w} \rVert ^2\ ,\boldsymbol{x}\in \text{可行区域}\\ +\infty \ \ \ \ \ ,\boldsymbol{x}\in \text{不可行区域}\\ \end{cases}
于是原约束问题就等价于
\underset{\boldsymbol{w,}b}{\min}\ \theta \left( \boldsymbol{w} \right) =\underset{\boldsymbol{w,}b}{\min}\underset{\alpha _i\ge 0}{\max}\ L\left( \boldsymbol{w,}b,\boldsymbol{\alpha } \right) =p^
看一下我们的新目标函数,先求最大值,再求最小值。这样的话,我们首先就要面对带有需要求解的参数 \boldsymbol{w} 和 b 的方程,而 \alpha _i 又是不等式约束,这个求解过程不好做。所以,我们需要使用拉格朗日函数对偶性,将最小和最大的位置交换一下,这样就变成了:
\underset{\alpha _i\ge 0}{\max}\underset{\boldsymbol{w,}b}{\min}\ L\left( \boldsymbol{w,}b,\boldsymbol{\alpha } \right) =d^
要有 p^=d^ ,需要满足两个条件:
① 优化问题是凸优化问题
② 满足KKT条件
首先,本优化问题显然是一个凸优化问题,所以条件一满足,而要满足条件二,即要求
\begin{cases} \alpha _i\ge 0\\ y_i\left( \boldsymbol{w}_{\boldsymbol{i}}\cdot \boldsymbol{x}_{\boldsymbol{i}}+b \right) -1\ge 0\\ \alpha _i\left( y_i\left( \boldsymbol{w}_{\boldsymbol{i}}\cdot \boldsymbol{x}_{\boldsymbol{i}}+b \right) -1 \right) =0\\ \end{cases}
为了得到求解对偶问题的具体形式,令 L\left( \boldsymbol{w,}b,\boldsymbol{\alpha } \right) 对 \boldsymbol{w} 和 b 的偏导为0,可得
\boldsymbol{w}=\sum_{i=1}^N{\alpha _iy_i\boldsymbol{x}_{\boldsymbol{i}}}
\sum_{i=1}^N{\alpha _iy_i}=0
将以上两个等式带入拉格朗日目标函数,消去 \boldsymbol{w} 和 b , 得
L\left( \boldsymbol{w,}b,\boldsymbol{\alpha } \right) =\frac{1}{2}\sum_{i=1}^N{\sum_{j=1}^N{\alpha _i\alpha _jy_iy_j\left( \boldsymbol{x}_{\boldsymbol{i}}\cdot \boldsymbol{x}_{\boldsymbol{j}} \right)}}-\sum_{i=1}^N{\alpha _iy_i\left( \left( \sum_{j=1}^N{\alpha _jy_j\boldsymbol{x}_{\boldsymbol{j}}} \right) \cdot \boldsymbol{x}_{\boldsymbol{i}}+b \right) +}\sum_{i=1}^N{\alpha _i}
\ \ \ \ \ \ \ \ \ \ \ =-\frac{1}{2}\sum_{i=1}^N{\sum_{j=1}^N{\alpha _i\alpha _jy_iy_j\left( \boldsymbol{x}_{\boldsymbol{i}}\cdot \boldsymbol{x}_{\boldsymbol{j}} \right)}}+\sum_{i=1}^N{\alpha _i}
即
\underset{\boldsymbol{w,}b}{\min}\ L\left( \boldsymbol{w,}b,\boldsymbol{\alpha } \right) =-\frac{1}{2}\sum_{i=1}^N{\sum_{j=1}^N{\alpha _i\al如何用java 5分钟实现一个最简单的mysql代理服务器
首先,准备开发工具套件,我们并不会引入过多工具包,仅仅需要:
java8
vertx 3
如果你是用maven做为项目管理工具,请将vertx 3引入:
1
2
3
4
5
<dependency>
<groupId>iovertx</groupId>
<artifactId>vertx-core</artifactId>
<version>332</version>
</dependency>
代码实现:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
package
commaxleapmysqlproxy;
import
iovertxcoreAbstractVerticle;
import
iovertxcoreVertx;
import
iovertxcoreloggingLogger;
import
iovertxcoreloggingLoggerFactory;
import
iovertxcorenetNetClient;
import
iovertxcorenetNetServer;
import
iovertxcorenetNetSocket;
/
@author sneaky
@since 100
/
public
class
MysqlProxyServer
{
private
static
final
Logger
logger
=
LoggerFactorygetLogger(MysqlProxyServerclass);
public
static
void
main(String[]
args)
{
Vertxvertx()deployVerticle(new
MysqlProxyServerVerticle());
}
public
static
class
MysqlProxyServerVerticle
extends
AbstractVerticle
{
private
final
int
port
=
3306;
private
final
String
mysqlHost
=
"101006";
@Override
public
void
start()
throws
Exception
{
NetServer
netServer
=
vertxcreateNetServer();//创建代理服务器
NetClient
netClient
=
vertxcreateNetClient();//创建连接mysql客户端
netServerconnectHandler(socket
->
netClientconnect(port,
mysqlHost,
result
->
{
//响应来自客户端的连接请求,成功之后,在建立一个与目标mysql服务器的连接
if
(resultsucceeded())
{
//与目标mysql服务器成功连接连接之后,创造一个MysqlProxyConnection对象,并执行代理方法
new
MysqlProxyConnection(socket,
resultresult())proxy();
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)