基于GPU的通用计算已成为近几年人们关注的一个研究热点。将GPU用于通用计算的主要目的是为了加速计算,加速的动力来自GPU在高性能计算方面所具有的优势。
(1)高效的并行性。
通过GPU多条绘制流水线的并行计算来体现的。百度下在目前主流的GPU中,多条流水线可以在单一控制部件的集中控制下运行,也可以独立运行。GPU的顶点处理流水线使用MIMD方式控制,片段处理流水线使用SIMD结构。相对于并行机而言,GPU提供的并行性在十分廉价的基础上,为很多适合于在GPU上进行处理的应用提供了一个很好的并行方案。
(2)高密集的运算。
GPU通常具有128位或256位的内存位宽,因此GPU在计算密集型应用方面具有很好的性能。
(3)超长图形流水线。
GPU超长图形流水线的设计以吞吐量的最大化为目标,因此GPU作为数据流并行处理机,在对大规模的数据流并行处理方面具有明显的优势。
CPU中的大部分晶体管主要用于构建控制电路(如分支预测等)和Cache,只有少部分的晶体管来完成实际的运算工作。GPU与CPU的设计目标不同,其控制电路相对简单,而且对Cache的需求较小,所以大部分晶体管可以组成各类专用电路和多条流水线,使GPU的计算速度有了突破性的飞跃,拥有惊人的处理浮点运算的能力。
正是由于GPU在并行处理和计算密集型问题求解等方面所具有的诸多优势,GPU已成为目前普通PC机所拥有的强大、高效的计算资源。从系统架构上看,GPU是针对向量计算进行了优化的高度并行的数据流处理机。这种以数据流作为处理单元的处理机,在对数据流的处理上可以获得很高的效率。
蓝海大脑高性能计算GPU服务器兼容的部件会依据产品兼容性的改善和技术演进存在增加或正常的替换,由3个节点以上构成,也可1-2节点。为保证性能,SAS HDD的数量应为SSD的2倍或更多,工作温度、噪音、功率等适应性依据配置。整机尺寸可依配置做适应性调整。更好地为生命科学、医药研发、元宇宙、大数据、地质遥感、高性能计算等行业服务。
型号 蓝海大脑高性能计算服务器
英特尔
处理器 Intel Xeon Gold 6240R 24C/48T,24GHz,3575MB,DDR4 2933,Turbo,HT,165W1TB
Intel Xeon Gold 6258R 28C/56T,27GHz,3855MB,DDR4 2933,Turbo,HT,205W1TB
Intel Xeon W-3265 24C/48T 27GHz 33MB 205W DDR4 2933 1TB
Intel Xeon Platinum 8280 28C/56T 27GHz 385MB,DDR4 2933,Turbo,HT 205W 1TB
Intel Xeon Platinum 9242 48C/96T 38GHz 715MB L2,DDR4 3200,HT 350W 1TB
Intel Xeon Platinum 9282 56C/112T 38GHz 715MB L2,DDR4 3200,HT 400W 1TB
AMD
处理器 AMD锐龙Threadripper Pro 3945WX 40GHz/12核/64M/3200/280W
AMD锐龙Threadripper Pro 3955WX 39GHz/16核/64M/3200/280W
AMD锐龙Threadripper Pro 3975WX 35GHz/32核/128M/3200/280W
AMD锐龙Threadripper Pro 3995WX 27GHz/64核/256M/3200/280W
AMD锐龙Threadripper Pro 5945WX 41G 12核/64M/3200/280W
AMD锐龙Threadripper Pro 5955WX 40G 16核/64M/3200/280W
AMD锐龙Threadripper Pro 5965WX 38G 24核/128M/3200/280W
AMD锐龙Threadripper Pro 5975WX 36G 32核/128M/3200/280W
AMD锐龙Threadripper Pro 5995WX 27G 64核/256M/3200/280W
显卡 NVIDIA A100×4, NVIDIA GV100×4
NVIDIA RTX 3090×4, NVIDIA RTX 3090TI×4,
NVIDIA RTX 8000×4, NVIDIA RTX A6000×4,
NVIDIA Quadro P2000×4,NVIDIA Quadro P2200×4
硬盘 NVMe2 SSD: 512GB,1TB; M2 PCIe - Solid State Drive (SSD),
SATA SSD: 1024TB, 2048TB, 5120TB
SAS:10000rpm&15000rpm,600GB,12TGB,18TB
HDD : 1TB,2TB,4TB,6TB,10TB
外形规格 立式机箱
210尺寸mm(高深宽) : 726 x 616 x 266
210A尺寸mm(高深宽) : 666 x 626 x 290
210B尺寸mm(高深宽) : 697 x 692 x 306
声卡:71通道田声卡
机柜安装 : 前置机柜面板或倒轨(可选)
电源 功率 : 1300W×2; 2000W×1
软件环境 可预装 CUDA、Driver、Cudnn、NCCL、TensorRT、Python、Opencv 等底层加速库、选装 Tensorflow、Caffe、Pytorch、MXnet 等深度学习框架。
前置接口 USB32 GEN2 Type-C×4
指承灯电和硬盘LED
灵动扩展区 : 29合1读卡器,eSATA,1394,PCIe接口(可选)
读卡器 : 9合1SD读卡器(可选)
模拟音频 : 立体声、麦克风
后置接口 PS2接口 : 可选
串行接口 : 可选
USB32 GEN2 Type-C×2
网络接口 : 双万兆 (RJ45)
IEEE 1394 : 扩展卡口
模拟音频 : 集成声卡 3口
连接线 专用屏蔽电缆(信号电缆和电源电缆)
资料袋 使用手册、光盘1张、机械键盘、鼠标、装箱单、产品合格证等{变量12}您可以咨询 联众集群(LINKZOL®)
如果以稳定性来说Server版的UBUNTU系统是要稳定一些的,两者无所谓,看你是否需要使用桌面图形,如果是在字符界面下 *** 作那么server版本的更合适些,因为UBUNTU系统本来应用于深度学习环境就有很多兼容性问题,所以建议用server版本的。
你可以咨询下他们,他们主要做深度学习方向的GPU服务器和GPU工作站。
GPU是什么?
GPU(Graphic Processing Unit)即图形处理器,其核心优势在于解决 数据 并行计算问题。
与CPU(Central Processing Unit,中央处理器)相比,GPU拥有更多的算数单元。CPU虽然有多核,但总数没有超过两位数,每个核都有足够大的缓存和足够多的数字及逻辑运算单元,并辅助很多加速分支判断甚至更复杂的逻辑判断硬件;GPU的核数远超CPU,被称为众核(NVIDIA Fermi有512个核),每个核拥有的缓存相对较小,数字逻辑运算单元少且简单。
GPU的分类具有两种维度:
一是根据与CPU的关系,GPU分为独立GPU和集成GPU。 按照是否呈独立的板卡存在,GPU可分为独立GPU和集成GPU。独立GPU(discrete GPU)使用了专用的显示存储器(显存),显存带宽决定了和GPU的连接速度。集成GPU(integrated GPU)与CPU集成于芯片组中,和CPU共享内存带宽。因此,独立GPU运算性能强但功耗和成本高,集成GPU则反之。
二是按应用终端分类,可分为PC GPU、服务器GPU、移动GPU。 其中,PC GPU应用于PC端,既有集成GPU,也有独立GPU;服务器GPU应用于服务器,可做专业可视化、计算加速、深度学习等应用;移动GPU受限于移动端功耗与体积的限制,一般都是集成GPU。
运算能力和功耗是评价GPU的两大重要指标。
显卡厂商将GPU芯片、显存、散热器、显卡接口等包装成完整的一个独立显卡,因此独立显卡可从运算性能和功耗散热两方面来评价,其中运算能力和数据存储能力共同决定了独立显卡的运算性能,而功耗和散热可以从散热设计功耗(TDP)和散热设计两方面考察。
集成GPU的评价在独立显卡的基础上还要额外考虑内存带宽。集成GPU一般用在移动端,不配备独立显存,而是与CPU共用内存,因此内存带宽代替显存带宽成为集成GPU的重要指标。
从市场格局来看,
GPU竞争壁垒高,强者恒强。 GPU有着较高的资本和技术壁垒,寡头垄断市场且集中度不断提升。PC时代,Intel 借CPU捆绑销售了大量集成GPU,占PC GPU市场份额第一。随着独立GPU份额不断扩大,NVIDIA和AMD逐渐崛起。移动互联网浪潮的兴起,让移动GPU市场崛起了ARM 、Imagination等公司。
①PC GPU市场格局:Intel占领集显市场,NVIDA和AMD分享独显份额。 目前全球PC GPU市场参与者主要为Intel、NVIDIA以及AMD。其中集成GPU由于其与CPU集合的特性,由Intel一家独大;独立显卡市场则由NVIDA(英伟达)和AMD(超威半导体)占据。根据JPR统计,2018年四季度个人电脑用独立GPU产品市场,NVDIA份额攀升至812%,AMD下滑到188%。对比2018年三季度,AMD份额为257%,2017年四季度更是占领330%的市场。AMD在独显领域,市场份额呈下滑趋势。
②移动GPU市场格局:五强抗衡,ARM第一。 移动端GPU的发展主要受智能手机发展推动。受限于芯片的面积、能耗以及成本,移动端GPU的性能较PC端GPU更低。2015年移动GPU领域市场份额前5的厂商分别是ARM、Imagination、Qualcomm、Vivante和NVIDIA。据Digitimes统计,2015年ARM全球移动GPU市占率达386%,中国市场市占率接近70%。
国内独立GPU市场空间达250亿元。
英伟达全年市占率约为75%。 JM7200相较初代产品JM5400性能已实现较大突破,能够满足基本办公和显示要求。作为国内唯一量产GPU的企业,随着国产GPU渗透率逐渐提升,公司业绩有望充分受益。
景嘉微在国产GPU领域的竞争对手包括三大派系:
①中船系:包括中船重工709所和中船重工716所。
716所自主研发的JARI G12 采用混合渲染架构,兼顾数据带宽和渲染延时需求,极大的增强了芯片的灵活性和适应性,该GPU不仅支持Windows、Linux、VxWorks等主流 *** 作系统,同时也支持中标麒麟、JARI-Works、道等国内 *** 作系统,
②学术系:以西邮微电为代表。 西邮微 电子 科技 有限公司脱胎于西安邮电大学GPU团队,其团队技术指导李涛教授,2009年从 美国 返回受聘西安邮电大学工作,是陕西省百人计划特聘专家,现任西安邮电大学陕西省通信专用集成电路设计工程技术研究中心总工程师。
西邮微电的代表GPU芯片为 “萤火虫1号”,该款芯片历经西安邮电大学GPU团队6年研发,于2015年12月通过了陕西省 科技 厅主持的成果鉴定。“萤火虫1号”主要包括leon3开源处理器、独立自主设计研发的GPU firefly,其3D图形渲染引擎采用传统图形渲染管线技术,共包含14个渲染核以及若干硬件加速。该芯片运行频率最高为250MHz,峰值计算速度可达25-3GFlops,目前主要作为自主设计研发的GPU雏形芯片。
③引进系:以中科曙光为代表。 中科曙光在CPU领域与AMD进行深度合作,后者2018一季度AMD在PC GPU市占率为149%,在独显GPU领域市占率为349%。2018年6月,AMD在台北展出了全球首款采用7nm技术的GPU芯片,内部整合了四颗二代高带宽显存(4×HBM2),总容量达到了32GB。近年来AMD的GPU业务发展迅速,预计将对中科曙光的GPU业务发展起积极作用。与中科曙光类似的还包括收购了Imagination的凯桥资本以及收购美国图芯的芯原。
景嘉微
公司推出的JM5400芯片打破了外国芯片在我国高性能GPU领域的垄断,填补了国内的市场空白。
2018年9月公司第二代GPU产品JM7200完成流片、 封装阶段工作,基本功能测试符合设计要求。但仅从显卡参数上,国内GPU与国外先进GPU仍存在较大差距, 保守估计技术水平落后6年时间,预计国产GPU短期内在民用市场较难取得突破。
公司的主要产品
公司在图像显控领域主要包括以下几种产品:
图形显控模块: 是信息融合和显示处理的“大脑”,广泛应用于固定翼飞机、旋转翼飞机及其他特种军用飞机等各类机型,可应用于军用舰艇、坦克装甲车等舰载、车载领域。图形显控模块是公司研发最早、积淀最深、也是目前最核心的产品,在国内机载航电系统图形显控领域占据大部分市场份额。
图形处理芯片 :是图形显控模块最核心的信息处理部件,决定着图形显控模块及整个图形显控系统性能的优劣。公司研发的以JM5400为代表的图形芯片打破外国芯片在我国军用GPU领域的垄断,率先实现军用GPU国产化。公司依托在芯片领域丰富的研发及应用经验,正在逐步 探索 向通用芯片领域延伸,目前已在音频芯片、蓝牙芯片等领域取得了突破
。
加固显示器: 主要作为军用飞机后舱任务系统的显示输出设备。同时采用了热学设计、力学设计、电磁兼容设计等技术,具有抗振、适应宽温工作环境和符合国军标电磁兼容要求的能力。
加固电子盘: 主要用于存储军用飞机航行过程中收集到的各种图形、态势信息数据。小容量的加固电子盘一般配套安装于图形显控模块,大容量的加固电子盘主要用作特种飞机上的独立存储设备。同时,加固电子盘具备加密、自毁等功能。
加固计算机: 主要应用于地面工作站对飞行器采集的图形、态势信息数据进行处理分析。公司利用在相关领域的技术优势,积极参与无人机地面站方舱车辆中加固计算机的科研、生产及服务,将航电领域的优势延伸至无人机地面显控、信息处理领域。公司先后承接了多个型号的加固计算机任务,已在无人机地面站领域占据一席之地。
公司开发的产品具根据客户要求定制开发、模块化设计集成度高、可靠新高、 生命周期 长等特点,叠加我国军用飞机需求不断上升,民用航空市场广阔的时代机遇,公司将依靠深厚的技术积累以及先发优势不断拓展市场空间,巩固国产图显显控领域的龙头地位。
公司目前的客户和销售模式
公司资质齐全,已打入军工集团供应商体系。
公司产品绝大部分为定制化军用电子核心模块,客户主要是国有军工集团下属单位,包括中航工业集团、中国电子 科技 集团以及中船重工集团等,客户集中度高。 中航工业集团是我国负责军用飞机研发、生产的军工集团,公司紧跟中航工业集团,等于牢牢占据军机航空显控市场。 2017年公司第一大客户占公司销售额为8766%;中航工业其下中国航空无线电电子研究所(简称中航工业615所)是中航工业负责军用飞机显控系统的主要制造商。该所主要从事航空电子系统总体与综合,航空电子核心处理与综合应用技术以及航空无线电通讯导航技术三大领域的研究和相关产品的研制和生产。
目新一代GPU JM7200适配顺利,加速产业化应用
前公司JM7200芯片已完成与龙芯、飞腾、银河麒麟、中标麒麟、国心泰山、道、天脉等国内主要的CPU和 *** 作系统厂商的适配工作,与中国长城、超越电子等十余家国内主要计算机整机厂商建立合作关系并进行产品测试 ,大力开展进一步适配与市场推广工作。 报告期内,公司JM7200芯片已经获得部分产品订单,将有利于JM7200的大力推广,加速批量订单落地速度。同时,公司下一代芯片研发已进入工程研制阶段,目前已完成可行性论证和方案论证,正在进行前端设计和软件设计
新产品的开发
2018年12月28日,公司向国家集成电路基金、湖南高新纵横共两名特定对象增发的30,596,174股,募集资金总额不超过1088亿元, 用于高性能GPU研发,以及MCU、低功耗蓝牙、Type-C&PD接口三类通用芯片项目
本次项目所研发的JM9231、JM9271产品是面向不同应用领域的两款中、高档系列产品,采用国际同类公司通用做法,根据业界主流的统一渲染架构,支持OpenGL45,在同一架构下,通过减少运算单元数量、渲染通道、显存带宽等手段,降低产品成本。
JM9231 是系公司正在研制的下一代GPU芯片的进一步升级,首先架构上采用了业界主流的统一渲染架构,支持OpenGL45,OpenCL12 API接口,可以无缝兼容市面上主流的CPU、 *** 作系统和应用程序,跟国际同类公司2016年中低端产品性能相当,主要针对国内办公电脑,便携式计算机、中低端的 游戏 机和高端嵌入式系统等消费电子领域,对图形生成和显示能力进行优化和进一步提高。
JM9271采用跟JM9231相同的 统一渲染架构,支持OpenGL45、OpenCL20API接口,通过增加运算单元数量,提高显存带宽,总线和输出接口速率,使得科学计算能 力得到了大幅度提升,可以达到国际同类公司2017年中高端产品的性能,主要针对人工智能、安防监控、语音识别、深度学习、云计算等对计算速度要求非常高的高端应用领域,在JM9231基础上对科学计算能力进行大幅度提高和改进,并针对人工智能领域开发相关的运算库和高性能计算平台,满足客户不同应用需求。
2018年11月28日,景嘉微宣布与中国长城就多领域展开合作:
1)共同开展基于 CPU、GPU、DSP、网络交换芯片、 *** 作系统的计算机整机升级换代的研发工作,推动产业化;解决关键软硬件兼容性问题,完善芯片适配,尽快实现广泛应用;
2)在基于支持 OpenGL 标准的高性能图形处理芯片,视频信号采集转换、编解码压缩、处理传输等技术,二三维地理信息数据应用等显控模块研发上开展技术合作,共同完善计算机系统的软硬件配置及其应用生态;
3)在无线 通信 产品、微波射频和信号处理产品、存储记录数据处理产品等领域开展应用合作;
4)在核心技术引进、关键技术产业化方面,建立投资标的信息及资源共享、互通机制;
5)共同推进信息安全产业链的发展,在计算机装备和民用信息安全基础设施领域展开广泛合作;
6)建立政府项目联合申报机制,共同申报国家级、省内外重大专项,支撑重大战略、项目落地。
携手核工业背景厂商KALRAY共同推进可编程通用芯片发展
长沙景嘉微电子股份有限公司的全资子公司长沙景美集成电路设计有限公司与KALRAYSA签署了《OEMANDDISTRIBUTORAGREEMENT》。景美与KALRAY公司将进行深度业务和技术合作,共同推进可编程通用计算芯片的发展。
KALRAY拥有核工业背景。 成立于2008年,获得法国可替代能源和原子能委员会(CEA)投资,公司同时也是CEA的供应商,它的极限运算技术最开始就是为CEA的核d实验模拟而定制开发的。除此之外,Kalray的主营项目还包括面向航空航天的重要内嵌系统开发及云计算业务。
KALRAY切入自动驾驶领域,打开新目标市场空间。 以超级计算芯片领域的优势,公司也加入了自动驾驶性能平台竞争的队伍中,推出了第一款面向自动驾驶 汽车 ,拥有288个VLIW内核的大规模并行处理器阵列芯片MPPA®处理器。
KALRAY拥有领先的多核处理器技术。 公司新一代芯片产品Bostan,内核处理器的数量达到了288个,它集成了16个计算集群,2MB的共享内存,每秒可处理数据量为80GB,拥有16个系统核。Bostan由于采用了片上网络NoC的通信方式,结合高速以太网接口(接口标准8GbE~10GbE),具有低延迟性的特点。
公司估值:
未来的发展空间
GPU性能在AI深度学习领域得以充分发挥。 GPU由于其在算法上的优化设计,成为目前深度学习领域应用最为广泛的核心芯片。GPU含有大量的逻辑核心,不依赖缓存,可使用更多内核进行数据的并行运算。作为当前主流的人工智能芯片,具有易于开发、软件生态完善、算力强等诸多优势。
无人驾驶 汽车 是人工智能在 汽车 行业的重大应用,需要传感器收集数据以及处理器对大量数据进行快速运算作为支撑。 英伟达已经开发了两代DrivePX无人驾驶 汽车 平台,其中DRIVEPX2搭载两颗NVIDIATegra处理器(共8个A57核心和4个Denver核心,共计12颗CPU和两颗基于NVIDIAPascal架构的新一代GPU,采用16nmFinFET工艺,单精度计算能力达到8TFlops,功耗250瓦。
安装 OpenSSH Server 是无比轻松的一件事情,需要的命令只有一条:
sudo apt-get install openssh-server
随后,Ubuntu 会自动下载并安装 openssh server,并一并解决所有的依赖关系。当您完成这一 *** 作后,您可以找另一台计算机,然后使用一个 SSH 客户端软件(强烈推荐 PuTTy),输入您服务器的 IP 地址。如果一切正常的话,等一会儿就可以连接上了。并且使用现有的用户名和密码应该就可以登录了。
在Ubuntu终端使用命令测试:
ssh localhost
如果出现以下错误,则很可能是因为还没有安装ssh-server:
ssh: connect to host localhost port 22: Connection refused
安装SSH-server:
sudo apt-get update
sudo apt-get install openssh-server openssh-client
启动SSH-Server
sudo /etc/initd/ssh start~
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)