假如没有服务注册中心,我们会干些什么事情呢?
在传统行业的项目架构中以下的方案最为常见了:
这种架构开发、部署都是最简单的,一般适用于中小企业访问量并不是太多的情况下,各个系统服务一台机器就搞定了。系统之间的调用也是拿到对方的IP+PORT直接连接。
接下来可能因为应用B开始访问量大了,单台机器已经不能满足我们的需求,于是一些反向代理工具应运而出,其中比较常见的有Apache、Nigix,架构演变为:
相比之前的应用B的单台机器访问,这种nginx代理的方式减轻了服务器的压力,但是可能会出现Nginx挂了,那么整个服务也不可用,于是又来了这么一套架构:
这样看方案算是完美了吧。然后事情并不是想象的那么一帆风顺,这还只是应用A调用一个应用B,如果应用A调用的可能是应用B、C、D、E,这种完全就不知道他后面到底还想干嘛,这种架构看似可以,但是绝对会累死运维的(nginx的配置将会非常混乱,直接导致运维不干了)。
服务注册中心干些什么事情呢?
上面提到的那种靠人力(主要是运维干的事情)比较繁琐,还不好维护,有这么几点不方便:应用服务的地址变了、双十一搞活动服务器新增等等。那么我们可以有这么的一种架构:
服务注册中心主要是维护各个应用服务的ip+port列表,并保持与各应用服务的通讯,在一定时间间隔内进行心跳检测,如果心跳不能到达则对服务IP列表进行剔除,并同时通知给其它应用服务进行更新。同样要是有新增的服务进来,应用服务会向注册中心进行注册,服务注册中心将通知给其它应用进行更新。每个应用都有需要调用对应应用服务的地址列表,这样在进行调用时只要处理客户负载杂均衡即可。
二、微服务注册中心
1Zookeeper
ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组服务等。
上面的话直接摘抄百度百科的内容,国内很多公司做分布式开发最初的选型大部分都是采用dubbo框架。dubbo框架注册中心主要使用zookeeper。zookeeper服务端与客户端的底层通讯为netty。zookeeper采用CAP理论中的CP,一般集群部署最少需要3台机器。
2Euraka
先来看一下euraka的架构图:
Register:服务注册
当Eureka客户端向Eureka Server注册时,它提供自身的元数据,比如IP地址、端口,运行状况指示符URL,主页等。
Renew:服务续约
Eureka客户会每隔30秒发送一次心跳来续约。 通过续约来告知Eureka Server该Eureka客户仍然存在,没有出现问题。 正常情况下,如果Eureka Server在90秒没有收到Eureka客户的续约,它会将实例从其注册表中删除。 建议不要更改续约间隔。
Fetch Registries:获取注册列表信息
Eureka客户端从服务器获取注册表信息,并将其缓存在本地。客户端会使用该信息查找其他服务,从而进行远程调用。该注册列表信息定期(每30秒钟)更新一次。每次返回注册列表信息可能与Eureka客户端的缓存信息不同, Eureka客户端自动处理。如果由于某种原因导致注册列表信息不能及时匹配,Eureka客户端则会重新获取整个注册表信息。 Eureka服务器缓存注册列表信息,整个注册表以及每个应用程序的信息进行了压缩,压缩内容和没有压缩的内容完全相同。Eureka客户端和Eureka 服务器可以使用JSON / XML格式进行通讯。在默认的情况下Eureka客户端使用压缩JSON格式来获取注册列表的信息。
Cancel:服务下线
Eureka客户端在程序关闭时向Eureka服务器发送取消请求。 发送请求后,该客户端实例信息将从服务器的实例注册表中删除。该下线请求不会自动完成,它需要调用以下内容:
DiscoveryManagergetInstance()shutdownComponent();
Eviction 服务剔除
在默认的情况下,当Eureka客户端连续90秒没有向Eureka服务器发送服务续约,即心跳,Eureka服务器会将该服务实例从服务注册列表删除,即服务剔除。
自我保护机制:
既然Eureka Server会定时剔除超时没有续约的服务,那就有可能出现一种场景,网络一段时间内发生了 异常,所有的服务都没能够进行续约,Eureka Server就把所有的服务都剔除了,这样显然不太合理。所以,就有了 自我保护机制,当短时间内,统计续约失败的比例,如果达到一定阈值,则会触发自我保护的机制,在该机制下, Eureka Server不会剔除任何的微服务,等到正常后,再退出自我保护机制。自我保护开关(eurekaserverenableself-preservation: false)
3Consul
consul推荐的架构图:
Consul不像Euraka的部署那么简单,他是go语言开发的,需要运维单独部署,有提供java的客户端连接,采用的是CAP的CP。
4Nacos
Euraka是Spring Cloud Netflix早期版本中推荐使用的,后来euraka10版本不再维护,euraka20已经闭源,导致很多新项目基于Spring Cloud Netflix 开发的选型变迁为Consul
Nacos是阿里开源的服务注册中心,它可以与spring cloud aliaba集成使用。
Nacos的官方介绍:
Nacos 致力于帮助您发现、配置和管理微服务。Nacos 提供了一组简单易用的特性集,帮助您实现动态服务发现、服务配置管理、服务及流量管理。
Nacos 帮助您更敏捷和容易地构建、交付和管理微服务平台。 Nacos 是构建以“服务”为中心的现代应用架构(例如微服务范式、云原生范式)的服务基础设施。
Nacos 地图
Nacos 生态图
如 Nacos 全景图所示,Nacos 无缝支持一些主流的开源生态,例如
Spring Cloud
Apache Dubbo and Dubbo Mesh TODO
Kubernetes and CNCF TODO
三、服务注册与发现技术选型
以下是来自网上的一个分享:
除了上述的几种以外,笔者更推荐使用Nacos作为服务注册中心。
推荐理由:
Nacos服务注册表结构Map<namespace, Map<group::serviceName, Service>>采用多层次Map结构,控制的颗粒度更细,支持金丝雀模式发布,心跳同步机制也更快速,服务更新更及时。简单地说,微服务架构就是以业务域或业务功能为边界,将一个大而全的应用拆分为可以独立开发,独立部署,独立测试,独立运行的一组小的应用,并且使用轻量级,通用的机制在这组应用间进行通信。
主流的微服务包括:
1、SpringCloud
Spring Cloud , 来自Spring,具有Spring 社区的强大支撑,还有Netflix强大的后盾与技术输出。Netflix作为一家成功实践微服务架构的互联网公司在几年前就把几乎整个微服务框架栈开源贡献给了社区,这些框架开源的整套服务架构套件是Spring Cloud的核心。
- Eureka:服务注册发现框架;
- Zuul:服务网关;
- Karyon:服务端框架;
- Ribbon:客户端框架;
- Hystrix:服务容错组件;
- Archaius:服务配置组件;
- Servo:Metrics组件;
- Blitz4j:日志组件;
2、Dubbo
Dobbo是一个分布式服务框架,是阿里开放的微服务化治理框架,致力于提高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案。其核心部分(官网)
- 远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式;
- 集群容错: 提供基于接口方法的透明远程过程调用,包括多协议支持,以及软负载均衡,失败容错,地址路由,动态配置等集群支持;
- 自动发现: 基于注册中心目录服务,使服务消费方能动态的查找服务提供方,使地址透明,使服务提供方可以平滑增加或减少机器。
Dubbo 也是采用全 Spring 配置方式,透明化接入应用,对应用没有任何 API 侵入,只需用 Spring 加载 Dubbo的配置即可,Dubbo 基于 Spring 的 Schema 扩展进行加载。当然也支持官方不推荐的 API 调用方式。
3、lstio
lstio 作为用于微服务聚合层管理的新锐项目,是Google、IBM、Lyft(海外共享出行公司、Uber劲敌),首个共同联合开源的项目,提供了统一的连接,安全,管理和监控微服务的方案。
目前首个测试版是针对Kubernetes环境的,社区宣称在未来几个月内会为虚拟机和Cloud Foundry 等其他环境增加支持。lstio将 流量管理添加到微服务中,并为增值功能(如安全性、监控、路由、连接管理和策略)创造了基础。
- >
这个问题已经收藏了一个多月了,一直在考虑如何回答这个问题,总结了很长时间终于有了一些感悟(之前一直都是只可意会不可言传的感觉),和大家分享一下,如果有不同的建议,欢迎大家留言指正。
分布式和微服务
首先,我认为微服务就是分布式框架的一种。
分布式的思想就是把一个系统的不同模块,部署在不同的服务器上,以应对高并发的问题。
SOA是一种分布式架构,把业务系统分成多个子系统,提供不同的服务,再通过服务组合、编排实现业务流程;通常在SOA架构中,ESB企业服务总线扮演了重要的角色。
微服务是SOA的升华,如果非要说点儿不同的,那么微服务更加强调服务的细分和专业,去ESB总线、去中心化,部署粒度更细,服务扩展更灵活。
微服务不只是技术架构
很多同学一说微服务,就说这是一种技术架构,有的推荐使用Dubbo,有的推荐使用SpringCloud。
我认为,微服务不单单是一种技术架构,也涉及到了管理、组织架构。
大多数的公司,需求、开发、测试、运维都是独立的团队,这实际上是有悖于微服务快速迭代的思想;在微服务的架构下,一个服务应该是由一个团队全权负责的。
不过组织架构方面的事情,真的不是我们能说了算的。
必须要用微服务?
我觉得没有必要为了微服务,而微服务;有的公司把服务拆分,但是数据库依然是同一个库,依然是一个项目直接掉另外一个项目的接口,然后对外就宣称完成了微服务的改造架构设计还是要根据需求背景、团队开发能力、软硬件实力综合来考虑。
好的架构是可以进化的,而不是一步到位建成的。
我将持续分享Java开发、架构设计、程序员职业发展等方面的见解,希望能得到你的关注。
微服务架构是一项在云中部署应用和服务的新技术。
大部分围绕微服务的争论都集中在容器或其他技术是否能很好的实施微服务,而红帽说API应该是重点。
微服务架构相关介绍:
微服务可以在“自己的程序”中运行,并通过“轻量级设备与>
在服务公开中,许多服务都可以被内部独立进程所限制。如果其中任何一个服务需要增加某种功能,那么就必须缩小进程范围。在微服务架构中,只需要在特定的某种服务中增加所需功能,而不影响整体进程的架构。
微服务不需要像普通服务那样成为一种独立的功能或者独立的资源。定义中称,微服务是需要与业务能力相匹配,这种说法完全正确。不幸的是,仍然意味着,如果能力模型粒度的设计是错误的,那么,我们就必须付出很多代价。
如果你阅读了Fowler的整篇文章,你会发现,其中的指导建议是非常实用的。在决定将所有组件组合到一起时,开发人员需要非常确信这些组件都会有所改变,并且规模也会发生变化。服务粒度越粗,就越难以符合规定原则。
服务粒度越细,就越能够灵活地降低变化和负载所带来的影响。然而,利弊之间的权衡过程是非常复杂的,我们要在配置和资金模型的基础上考虑到基础设施的成本问题。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)