当您单击“立即更新”按钮时,时钟应立即同步。如果该 *** 作失败,可能出于以下几个原因:
没有连接到 Internet。在试图同步时钟前创建 Internet 连接。
个人或网络防火墙阻止时钟同步。大多数公司或组织的防火墙同一些个人防火墙一样会阻碍时钟同步。家庭用户应阅读防火墙文档以得到关于消除网络时间协议 (NTP) 障碍的信息。如果切换到了 Windows 防火墙,则应该可以同步时钟。
Internet 时间服务器正忙,或者暂时不可用。如果属于这种情况的话,可以试着稍后再同步您的时钟或通过双击[url=ms-its:C:\WINDOWS\Help\datetimechm::/HELP=glossaryhlp TOPIC=gls_taskbar]任务栏[/url]上的时钟来手动更新。也可以试着采用另外一个不同的时间服务器。
计算机上显示的时间与 Internet 时间服务器的当前时间有很大的差别。如果计算机的时间与 Internet 时间服务器的时间相比,滞后值超过 15 个小时,则 Internet 时间服务器无法同步您的计算机时钟。若要正确地同步时间,请确保时间和日期设置值接近位于“控制面板”中“日期和时间属性”中的当前时间。
注意
要打开“日期和时间”,请依次单击“开始”、“控制面板”、“日期、时间语言和区域设置”,然后单击“日期和时间”。
Internet 时间服务器将更新由您的计算机设置的日期和时间。
只有在选中“自动与 Internet 时间服务器同步”复选框后,“立即更新”按钮才有效。
可以在“时间和日期”选项卡(位于“控制面板”的“日期和时间”上)中手动更改计算机时钟时间。也可以通过双击任务栏上的时钟来打开“日期和时间”。
Windows Time没有启用,解决步骤如下:
1、在电脑上找到命令提示符,右键鼠标,点击以管理员身份运行即可。
2、然后在命令窗口输入w32tm /register,点击回车按钮。
3、然后找到电脑的服务选项,点击下一进入。
4、在服务中,按照排序找到Windows Time,然后点击鼠标右键,启用该功能。
5、最后就可以看到服务运行,时间就不会出错了。
鹤湖科技提供解决方案:
1、启动windows time服务,在开始-运行输入命令“servicesmsc“回车,打开服务中心(如下图)。
2、找到windows time服务,启动(如下图)。
3、进入日期和时间中心,选择”Internet时间“,进行设置(如下图)。
4、勾选同步,选择服务器”timewindowscom“,立即更新,显示 同步成功后,点击确认即可。
有可能是没有启用互联网连接,不能实时同步服务器,也有可能是校时还没到时间,因为中间有一个间隔
时间同步就是通过对本地时钟的某些 *** 作,达到为分布式系统提供一个统一时间标度的过程。在集中式系统中,由于所有进程或者模块都可以从系统唯一的全局时钟中获取时间,因此系统内任何两个事件都有着明确的先后关系。
而在分布式系统中,由于物理上的分散性,系统无法为彼此间相互独立的模块提供一个统一的全局时钟,而由各个进程或模块各自维护它们的本地时钟。由于这些本地时钟的计时速率、运行环境存在不一致性,因此即使所有本地时钟在某一时刻都被校准
一段时间后,这些本地时钟也会出现不一致。为了这些本地时钟再次达到相同的时间值,必须进行时间同步 *** 作。
扩展资料:
时间同步的主要分类
无线电波
时间同步的另一种方法是用无线电波传播时间信息。即利用无线电波来传递时间标准.然后由授时型接收机恢复时号与本地钟相应时号比对,扣除它在传播路径上的时延及各种误差因素的影响,实现钟的同步。
随着对时钟同步精度要求的不断提高,用无线电波授时的方法,开始用 授时(ms级精度),由于短波传播路径受电离层变化的影响,天波有一次和多次天波,地波传播距离近,使授时精度仅能达到ms级。
后来发展到用超长波即用奥米伽台授时,其授时精度约10μs左右,后来又用长波即用罗兰C台链兼顾授时,其授时精度可达到μs,即使罗兰C台链组网也难于做到全球覆盖。后来又发展到用卫星钟作搬钟。用超短波传播时号.通过用户接收共视某颗卫星,使其授时精度优于搬钟可达到10ns精度。
卫星
看来利用卫星授时是实现全球范围时钟精密同步的好办法,只有利用卫星,才可在全球范围内用超短波传播时号;用超短波传播时号不仅传递精度高,而且可提高时钟比对精度
通过共视方法,把卫星钟当作搬运钟使用,且能使授时精度高于直接搬钟,直接搬钟难于使两地时钟去共视它。共视可以消除很多系统误差以及随时间慢变化的误差,快变化的随机误差可通过积累平滑消除。
网络
首先要了解什么是NTP协议 :NTP协议全称网络时间协议(Network Time Protocol)。它的目的是在国际互联网上传递统一、标准的时间。具体的实现方案是在网络上指定若干时钟源网站,为用户提供授时服务,并且这些网站间应该能够相互比对,提高准确度。
NTP最早是由美国Delaware大学的Mills教授设计实现的,从1982年最初提出到现在已发展了将近20年,2001年最新的NTPv4精确度已经达到了200毫秒。
NTP同时同步指的是通过网络的NTP协议与时间源进行时间校准。前提条件,时间源输出必须通过网络接口,数据输出格式必须符合NTP协议。
局域网内所有的PC、服务器和其他设备通过网络与时间服务器保持同步,NTP协议自动判断网络延时,并给得到的数据进行时间补偿。从而使局域网设备时间保持统一精准。
参考资料来源:百度百科-时间同步
OPENGL是图形处理库,显卡驱动没装是一个可能,还有就是你的显卡不够高级,支持不了高版本的OPENGL,详细介绍如下:OpenGL三维图形标准是由AT&T公司UNIX软件实验室、IBM
、DEC、SUN、HP、Microsoft和SGI等多家公司在GL图形库标准的基础
上联合推出的开放式图形库,它使在微机上实现三维真实
感图形的生成与显示成为可能。由于OpenGL是开放的图形标
准,用户原先在UNIX下开发的OpenGL图形软件很容易移植到微
机上的WindowsNT/95上。笔者在VisualC++41(以下简称VC)集
成环境下,开发了基于OpenGL的三维真实感图形应用程序,现
介绍如下。
微机上的OpenGL开发环境
基于OpenGL标准开发的应用程序必须运行于32位Windows
平台下,如WindowsNT或Windows95环境;而且运行时还需有动态
链接库OpenGL32DLL、Glu32DLL,这两个文件在安装WindowsNT时已
自动装载到C:\WINNT\SYSTEM32目录下(这里假定用户将WindowsNT
安装在C盘上);而对于使用Windows95平台的用户,则需手工将
两个动态库复制到Windows95目录的SYSTEM子目录中。安装了
WindowsNT/95和VC41后,用户就具备了基于OpenGL开发三维图
形软件的基本条件。
OpenGL程序设计的基本步骤
1OpenGL在WindowsNT下的运行机制
OpenGL工作在客户机/服务器模式下,当客户方(即基
于OpenGL标准开发的应用程序)向服务器(OpenGL核心机制)发出
命令时,由服务器负责解释这些命令。通常情况下,客户方
和服务器是运行在同一台微机上的。由于OpenGL的运行机制
是客户机/服务器模式,这使得用户能够十分方便地在网
络环境下使用OpenGL,OpenGL在WindowsNT上的这种实现方式通常
称为网络透明性。
OpenGL的图形库函数封装在动态链接库OpenGL32DLL中,
客户机中的所有OpenGL函数调用,都被传送到服务器上,由
WinSrvDLL实现功能,再将经过处理的指令发送到Win32设备驱
动接口(DDI),从而实现在计算机屏幕上产生图像。
若使用OpenGL图形加速卡,则上述机制中将添加两个
驱动器:OpenGL可装载客户模块(OpenGLICD)将安装在客户端;硬
件指定DDI将安装在服务器端,与WinDDI同一级别。
2OpenGL的库函数
开发基于OpenGL的应用程序,必须先了解OpenGL的库函
数。OpenGL函数命令方式十分有规律,每个库函数均有前缀gl
、glu、aux,分别表示该函数属于OpenGL基本库、实用库或辅助
库。WindowsNT下的OpenGL包含了100多个核心函数,均以gl作为前
缀,同时还支持另外四类函数:
OpenGL实用库函数:43个,以glu作为前缀;
OpenGL辅助库函数:31个,以aux作为前缀;
Windows专用库函数(WGL):6个,以wgl作为前缀;
Win32API函数(WGL):5个,无前缀。
OpenGL的115个核心函数提供了最基本的功能,可以实
现三维建模、建立光照模型、反走样、纹理映射等;OpenGL实
用库函数在核心函数的上一层,这类函数提供了简单的调
用方法,其实质是调用核心函数,目的是减轻开发者的编程
工作量;OpenGL辅助库函数是一些特殊的函数,可以供初学者
熟悉OpenGL的编程机制,然而使用辅助库函数的应用程序只
能在Win32环境中使用,可移植性较差,所以开发者应尽量避
免使用辅助库函数;Windows专用库函数(WGL)主要针对WindowsNT
/95环境的OpenGL函数调用;Win32API函数用于处理像素存储格
式、双缓存等函数调用。
3VC环境下基于OpenGL的编程步骤
下面介绍在VC环境中建立基于Opeetting菜单选项,在Link栏的Lib输入域中
添加openg132lib、glu32lib,若需使用OpenGL的辅助库函数,则还
需添加glauxlib。
(3)选择View/ClassWizard菜单选项,打开MFC对话框,在
ClassName栏中选择CMyTestView类,进行以下 *** 作:
选择WM_CREATE消息,鼠标单击EditCode,将OpenGL初始化代码
添加到OnCreate()函数中:
/*定义像素存储格式*/
PIXELFORMATDESCRIPTORpfd=
{
sizeof(PIXELFORMATDESCRIPTOR),
1,
PFD_DRAW_TO_WINDOW|PFD_SUPPORT_OPENGL,
PFD_TYPE_RGBA,
24,
0,0,0,0,0,0,
0,0,0,0,0,0,0
32,
0,0,
PFD_MAIN_PLANE,
0,
0,0,0,
}
CCLientdc(this);
intpixelFormat=ChoosePixelFormat(dcm_hDC,&pfd);
BOOLsuccess=SetPixelFormat(dcm_hDC,pixelFormat,&pfd);
m_hRC=wglCreateContext(dcm_hDC);
选择WM_DESTORY消息,在OnDestory()中添加以下代码:
wglDeleteContext(m_hRC);
在MyTestViewcpp中,将以下代码添加到PreCreateWindows()函数中:
csstyle|=WS_CLIPCHILDREN|WS_CLIPSIBLINGS;
OpenGL只对WS_CLIPCHILDREN|WS_CLIPSIBLINGS类型窗口有效;
在MyTestViewcpp中,将以下代码添加到OnDraw()函数中:
wglMakeCurrent(pDC->m_hDC,m_hRC);
DrawScene();//用户自定义函数,用于绘制三维场景;
wglMakeCurrent(pDC->m_hDC,NULL);
在MyTestViewcpp中,添加成员函数DrawScene():
voidCMyTestView::DrawScene()
{/*绘制三维场景*/}
(4)在MyTestViewh中包含以下头文件并添加类成员说明:
#include
#include
#include
在CTestView类中的protected:段中添加成员变量声明:
HGLRCm_hRC;
同时添加成员函数声明:
DrawScene();
这样,一个基于OpenGL标准的程序框架已经构造好,用
户只需在DrawScene()函数中添加程序代码即可。
建立三维实体模型
三维实体建模是整个图形学的基础,要生成高逼真
度的图像,首先要生成高质量的三维实体模型。
OpenGL中提供了十几个生成三维实体模型的辅助库函
数,这些函数均以aux作为函数名的前缀。简单的模型,如球
体、立方体、圆柱等可以使用这些辅助函数来实现,如
auxWireSphere(GLdoubleradius)(绘制一半径为radius的网状球体)。
但是这些函数难以满足建立复杂三维实体的需要,所以用
户可以通过其它建模工具(如3DS等)来辅助建立三维实体模
型数据库。笔者在三维实体的建模过程中采用3DS提供的2D
Shape、3DLofter和3DEditor进行模型的编辑,最后通过将模型数
据以DXF文件格式输出存储供应用程序使用。
真实感图形的绘制
1定义光照模型和材质
(1)光源。OpenGL提供了一系列建立光照模型的库函
数,使用户可以十分方便地在三维场景中建立所需的光照
模型。OpenGL中的光照模型由环境光(AmbientLight)、漫射光
(DiffuseLight)、镜面反射光(SpecularLight)等组成,同时还可设
置光线衰减因子来模拟真实的光源效果。
例如,定义一个**光源如下:
GlfloatLight_position[]={10,10,10,00,};
GlfloatLight_diffuse[]={10,10,00,10,};
glLightfv(GL_LIGHT0,GL_POSTTION,light_position);//定义光源位置
glLightfv(GL_LIGHT0,GL_DIFFUSE,light_diffuse);//定义光源漫射光
光源必须经过启动后才会影响三维场景中的实体,可以通过以下指令使光源有效:<
glEnable(LIGHTING);//启动光照模型;
glEnable(GL_LIGHT0);//使光源GL_LIGHT0有效;
OpenGL中一共可以定义GL_LIGHT0~GL_LIGHT7八个光源。
(2)材质。OpenGL中的材质是指构成三维实体的材料在
光照模型中对于红、绿、蓝三原色的反射率。与光源的定义
类似,材质的定义分为环境、漫射、镜面反射成分,另外还
有镜面高光指数、辐射成分等。通过对三维实体的材质定义
可以大大提高应用程序所绘制的三维场景的逼真程度。例
如:
/*设置材质的反射成分*/
GLfloatmat_ambient[]={08,08,08,10};
GLfloatmat_diffuse[]={08,00,08,10};/*紫色*/
GLfloatmat_specular[]={10,00,10,10};/*镜面高光亮紫色*/
GLfloatmat_shiness[]={1000};/*高光指数*/
glMaterialfv(GL_FRONT,GL_AMBIENT,mat_ambient);/*定义环境光反射率*/
glMaterialfv(GL_FRONT,GL_DIFFUSE,mat_diffuse);/*定义漫射光反射率*/
glMaterialfv(GL_FRONT,GL_SPECULAR,mat_specular);/*定义镜面光反射率*/
glMaterialfv(GL_FRONT,GL_SHINESS,mat_shiness);/*定义高光指数*/
(3)材质RGB值与光源RGB值的关系。OpenGL中材质的颜色
与光照模型中光源的颜色含义略有不同。对于光源,R、G、B
值表示三原色在光源中所占有的比率;而对于材质定义,R、
G、B的值表示具有这种材质属性的物体对于三原色的反射
比率,场景中物体所呈现的颜色与光照模型、材质定义都相
关。例如,若定义的光源颜色是(Lr,Lg,Lb)=(10,10,10)(白光),
物体的材质颜色定义为(Mr,Mg,Mb)=(00,00,08),则最终到达人
眼的物体颜色应当是(Lr*Mr,Lg*Mg,Lb*Mb)=(00,00,08)(蓝色)。
2读取三维模型数据
为了绘制三维实体,我们首先必须将预先生成的三
维实体模型从三维实体模型库中读出。下图描述了读取三
维实体模型的流程。
3三维实体绘制
由于3DS的DXF文件中对于三维实体的描述是采用三角
形面片逼近的方法,而在OpenGL函数库中,提供了绘制三角形
面片的方法,所以为三维实体的绘制提供了方便。以下提供
了绘制三角形面片的方法:
glBegin(TRANGLES);//定义三角形绘制开始
glVertexf((GLfloat)x1,(GLfloat)y1,(GLfloat)z1);//第一个顶点
glVertexf((GLfloat)x2,(GLfloat)y2,(GLfloat)z2);//第二个顶点
glVertexf((GLfloat)x3,(GLfloat)y3,(GLfloat)z3);//第三个顶点
glEnd();//绘制结束
为了提高三维实时动画的显示速度,我们利用了
OpenGL库中的显示列表(DisplayList)的功能,将三维场景中的实
体分别定义为单独的显示列表,预先生成三维实体。在图形
显示时,只需调用所需的显示列表即可显示相应的三维实
体,而不需要重新计算实体在场景中的坐标,避免了大量的
浮点运算。在调用显示列表前所作的旋转、平移、光照、材
质的设定都将影响显示列表中的三维实体的显示效果。具
体实现算法如下:
for(ObjectNo=0;ObjectNo<实体个数;ObjectNo++)
{
glNewList(ObjectNo,GL_COMPILE);//创建第ObjectNo个实体的显示列表
for(Fac
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)