如何部署GPU满足服务器工作负载需求

如何部署GPU满足服务器工作负载需求,第1张

选择GPU服务器时首先要考虑业务需求来选择适合的GPU型号。在HPC高性能计算中还需要根据精度来选择,比如有的高性能计算需要双精度,这时如果使用P40或者P4就不合适,只能使用V100或者P100;同时也会对显存容量有要求,比如石油或石化勘探类的计算应用对显存要求比较高;还有些对总线标准有要求,因此选择GPU型号要先看业务需求。

GPU服务器人工智能领域的应用也比较多。在教学场景中,对GPU虚拟化的要求比较高。根据课堂人数,一个老师可能需要将GPU服务器虚拟出30甚至60个虚拟GPU,因此批量Training对GPU要求比较高,通常用V100做GPU的训练。模型训练完之后需要进行推理,因此推理一般会使用P4或者T4,少部分情况也会用V100。

综上所述,选择服务器时不仅需要考虑业务需求,还要考虑性能指标,比如精度、显存类型、显存容量以及功耗等,同时也会有一些服务器是需要水冷、降噪或者对温度、移动性等等方面有特殊的要求,就需要特殊定制的服务器。

欢迎了解更多:网页链接

不错,碾压般的存在。浪潮在GPU服务器研发领域已经推出不了不少佳作,比如浪潮NF5448A6这款,它是面向HPC+AI计算优化的GPU服务器,系统采用高性能与高扩展的均衡设计,它的算力强大,拓展能力高,可以帮助用户更方便和低成本地获得业界领先的SXM4接口A800 GPU技术,从而构建强大领先的HPC+AI计算系统。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/13468537.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-08-13
下一篇 2023-08-13

发表评论

登录后才能评论

评论列表(0条)

保存