Java数据库,哪个更好用?

Java数据库,哪个更好用?,第1张

我将推荐给你们10个最高效的Java数据
1、MongoDB——最受欢迎,跨平台,面向文档的数据库
MongoDB是一个基于分布式文件存储的数据库,使用C++语言编写。旨在为Web应用提供可扩展的高性能数据存储解决方案。应用性能高低依赖于数据库性能,MongoDB则是非关系数据库中功能最丰富,最像关系数据库的,随着MongDB 34版本发布,其应用场景适用能力得到了进一步拓展。
MongoDB的核心优势就是灵活的文档模型、高可用复制集、可扩展分片集群。你可以试着从几大方面了解MongoDB,如实时监控MongoDB工具、内存使用量和页面错误、连接数、数据库 *** 作、复制集等。
2、Elasticsearch ——为云构建的分布式RESTful搜索引擎
ElasticSearch是基于Lucene的搜索服务器。它提供了分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java开发的,并作为Apache许可条款下的开放源码发布,是比较流行的企业级搜索引擎。
ElasticSearch不仅是一个全文本搜索引擎,还是一个分布式实时文档存储,其中每个field均是被索引的数据且可被搜索;也是一个带实时分析功能的分布式搜索引擎,并且能够扩展至数以百计的服务器存储及处理PB级的数据。ElasticSearch在底层利用Lucene完成其索引功能,因此其许多基本概念源于Lucene。
3、Cassandra——开源分布式数据库管理系统
最初是由Facebook开发的,旨在处理许多商品服务器上的大量数据,提供高可用性,没有单点故障。
Apache Cassandra是一套开源分布式NoSQL数据库系统。集Google BigTable的数据模型与Amazon Dynamo的完全分布式架构于一身。于2008开源,此后,由于Cassandra良好的可扩展性,被Digg、Twitter等Web 20网站所采纳,成为了一种流行的分布式结构化数据存储方案。
因Cassandra是用Java编写的,所以理论上在具有JDK6及以上版本的机器中都可以运行,官方测试的JDK还有OpenJDK 及Sun的JDK。 Cassandra的 *** 作命令,类似于我们平时 *** 作的关系数据库,对于熟悉MySQL的朋友来说, *** 作会很容易上手。
4、Redis ——开源(BSD许可)内存数据结构存储,用作数据库,缓存和消息代理
Redis是一个开源的使用ANSI C语言编写的、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。
Redis 有三个主要使其有别于其它很多竞争对手的特点:Redis是完全在内存中保存数据的数据库,使用磁盘只是为了持久性目的; Redis相比许多键值数据存储系统有相对丰富的数据类型; Redis可以将数据复制到任意数。Redis 这么火,它都解决了哪些问题?
5、Hazelcast ——基于Java的开源内存数据网格
Hazelcast 是一种内存数据网格 in-memory data grid,提供Java程序员关键任务交易和万亿级内存应用。虽然Hazelcast没有所谓的“Master”,但是仍然有一个Leader节点(the oldest member),这个概念与ZooKeeper中的Leader类似,但是实现原理却完全不同。同时,Hazelcast中的数据是分布式的,每一个member持有部分数据和相应的backup数据,这点也与ZooKeeper不同。
Hazelcast的应用便捷性深受开发者喜欢,但如果要投入使用,还需要慎重考虑。
6、Ehcache——广泛使用的开源Java分布式缓存
主要面向通用缓存、Java EE和轻量级容器。
EhCache 是一个纯Java的进程内缓存框架,具有快速、精干等特点,是hibernate中默认的CacheProvider。
主要特性有:快速简单,具有多种缓存策略;缓存数据有两级,内存和磁盘,因此无需担心容量问题;缓存数据会在虚拟机重启的过程中写入磁盘;可以通过RMI、可插入API等方式进行分布式缓存;具有缓存和缓存管理器的侦听接口;支持多缓存管理器实例,以及一个实例的多个缓存区域;提供Hibernate的缓存实现。Ehcache介绍及整合Spring实现高速缓存。
7、Hadoop ——用Java编写的开源软件框架
用于分布式存储,并对非常大的数据用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群进行高速运算和存储。
Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。Hadoop的框架最核心的设计就是:HDFS和MapReduce。HDFS为海量的数据提供了存储,MapReduce则为海量的数据提供了计算。
8、Solr ——开源企业搜索平台,用Java编写,来自Apache Lucene项目
Solr是一个独立的企业级搜索应用服务器,它对外提供类似于Web-service的API接口。用户可以通过>严格的说,Hbase 和它的支持系统源于著名的Google BigTable和Google文件系统设计(GFS的论文发于2003年,BigTable的论文发于2006年)。而 Cassandra 则是最近Facebook的数据库系统的开源分支,她在实现了BigTable的数据模型的同时,使用了基于Amazon的Dynamo的系统架构来存储数据(实际上,Cassandra的最初开发工作就是由两位从Amazon跳槽到Facebook的Dynamo工程师完成的)。
备注1Dynamo是亚马逊的key-value模式的存储平台,可用性和扩展性都很好,性能也不错:读写访问中999%的响应时间都在300ms内。
在Dynamo的实现中提到一个关键的东西,就是数据分区。假设我们的数据的key的范围是0到2的64次方(不用怀疑你的数据量会超过它,正常甚至变态情况下你都是超不过的,甚至像伏地魔等其他类Dynamo系统是使用的 2的32次方),然后设置一个常数,比如说1000,将我们的key的范围分成1000份。然后再将这1000份key的范围均匀分配到所有的节点(s个节点),这样每个节点负责的分区数就是1000/s份分区。
如图二,假设我们有A、B、C三台机器,然后将我们的分区定义了12个。
图二:三个节点分12个区的数据的情况
因为数据是均匀离散到这个环上的(有人开始会认为数据的key是从1、2、3、4……这样子一直下去的,其实不是的,哈希计算出来的值,

备注2DHT(Distributed Hash Table,分布式哈希表),它是一种分布式存储寻址方法的统称。就像普通的哈希表,里面保存了key与value的对应关系,一般都能根据一个key去对应到相应的节点,从而得到相对应的value。

备注3Consistency(一致性):即数据一致性,简单的说,就是数据复制到了N台机器,如果有更新,要N机器的数据是一起更新的。
Availability(可用性):好的响应性能,此项意思主要就是速度。
Partition tolerance(分区容错性):这里是说好的分区方法,体现具体一点,简单地可理解为是节点的可扩展性。
定理:任何分布式系统只可同时满足二点,没法三者兼顾

这个理论说明,分布式(或共享数据)系统的设计中,至多只能够提供三个重要特性中的两个——一致性、可用性和容忍网络分区。简单的说,一致性指如果一个人向数据库写了一个值,那么其他用户能够立刻读取这个值,可用性意味着如果一些节点失效了,集群中的分布式系统仍然能继续工作,而容忍分区意味着,如果节点被分割成两组无法互相通信的节点,系统仍然能够继续工作
对比关系型数据库,NoSQL的优点在哪里看NoSQL具有高性能、良好的扩展性以及高可靠性等优点。然而,没有一个产品可以在所有的方面都达到完美。当你仔细审视NoSQL的产品,完全可以找到一些弱点,就像那些杰出的优点一样逗鲜明出众地。基于此原因,选择经过验证的NoSQL产品就是关键。在本文中,作者从运行方面分析Cassandra,HBase以及MongoDB等产品的扩展性和可靠性。
Cassandra故障恢复以及数据一致性
Cassandra在数据的分布式和可靠性方面展示了自身卓越的性能。首先,作者检测了它的分布能力,Cassandra通过一致性哈希算法来实现数据的分配处理。
Cassandra的一致性哈希算法
通过一致性哈希算法,用户可以不经过查询元数据就能搜索并发现key存储在哪个节点上。用户通过计算key的哈希值就能发现key,同样只通过Hash值就可以找到节点所在。你可以想像一致性哈希被作为哈希值顺序的放在圆环上,每个节点处理环上的一个部分。如果环上增加了一个节点,那么某个拥有很大体积数据的特定节点就会被拆分然后分配给新的节点;如果某个节点被移除,分配给该节点的资源就会转移到邻节点上。利用这种方式,Cassandra使增加或者移除节点带来的影响降到了最小。
Cassandra的运行中不需要主服务器,换句话说:并没有特定的服务器来管理数据的分配或者故障恢复。这就意味着,Cassandra并不存在单点故障(Single Point Of Failure,SPoF)。取代主服务器,每个节点都和其他节点周期性地分享元数据,这个也被称之为Gossip协议。使用Gossip协议,节点可以对其他节点的运行状态进行查询。
Cassandra通过提供一致性级别来实现系统的可靠性。如果使用一个很低的一致性级别,即使一个节点宕掉也可能导致整个服务的停滞。例如,3个节点中的某一个节点在存储副本数据的过程中宕掉了,一个通用的写 *** 作,就不能立刻返回成功信息,这是因为故障节点不能完成写入数据的请求。然而,如果一致性级别被定义成一个约定值或者是1,而存活的节点数大于或者等于设定值,这样的话就能立刻返回成功。如果是这样的话,只有在所有的3个节点都同时宕掉,才会发生请求错误。
但是,读/写 *** 作真的没有受到节点出错的影响吗看
为了证明这点,当有新节点添加时,作者在不断的服务器请求下故意让一个节点发生故障。结果如下所示:
移除一个节点和增加一个新的节点
以下是移除一个节点和增加一个新的节点的结果:
在管理工具中明确移除一个节点,存储在此节点中的数据就被迁移到剩余的节点中,然后该节点被移除。
当一个新节点被增加,这个被称之为引导指令,增加的节点就会向种子节点(seed nodes)报告它已经添加完毕。基于配置信息,新节点会被添加在环上配置信息中指定的范围,或者环上资源被占用最高的节的附近—— 当然这是在没有其它节点被引导在这个范围上。
数据从那个节点迁移到到新节点上。
一旦数据迁移进程结束,新节点就能进行使用。
节点失败后增加一个新节点
下面是节点失败后新增节点的结果:
当一个节点宕掉之后,存储在节点上的数据并没有迁移到其他的节点上,服务在于两个副本(节点)共舞。换句话说,并没有返回任何错误信息,即使在这段时间里又收到服务请求。
当一个新节点被增加的时候,该节点会被分配到环上的一个特定区域。然而,引导指令并没有执行,因为引导指令只有系统中存在3份副本的时候才会被执行!
新增的节点并没有数据,但是它能处理请求,这是因为它可以提供服务。如果此时接受到一个读请求,节点并不会对key返回数据。如果备份因子是3而读一致性的级别是1,那么1/3的读请求可能不会返回数据。如果一致性级别被设置为约定值,1/6的读请求可能会返回空数据。简单来讲,这没有读一致性的保证,除非故障节点已经恢复。实际上在级别1中,协调节点是最有可能第一个接受来自新节点的响应。出现这种情况是因为没有来自新节点的I/O请求——因为它没有数据。出于这个原因,新的节点比现有节点有更大的机率返回空数据。
当通过管理工具对新节点做Read Repair时,节点通过读其他节点的同步数据才能得以建立。此时读一致性就被破坏了,只到Read Repair完成。
即使节点失败,Cassandra也能提供无错的服务。尽管Cassandra在写数据的时候,展示了自身强大的性能,但是在读数据的时候并非如此,因为Read Repair的延迟必然导致数据的非一致性的延迟。因此,为了在节点故障中保持读一致性,需要使用以下的方法:
设置读一致性水平为逗all地然后执行读 *** 作。在这种情况下,就能获得所有来自副本的最新数据。
一旦读请求失败,Cassandra会再次进行尝试。这是因为在第一次读写的时候Read Repair可能会作为第二次读写时的恢源数据源。然而,这种方法能确保Rread Repair在二次读之前完成。(当一致性的水平较低,那么读修复就会在后台执行,这是一个独立的线程,区别于读 *** 作过程的线程)
HBase的失败因子和恢复方法
HBase包含以下几个组件:
HRegionServer负责数据的分布处理,由HMaster进行监控。HDFS存储和复制数据,Zookeeper存储了HMaster以及备选HMaster的储存单元信息。如果没有为每个组件建立冗余,所有的组件都会成为SPoF。
HRegionServer主要负责响应用户I/O请求,向HDFS文件系统中读写数据,是HBase中最核心的模块。HRegionServer内部管理了一系列HRegion对象,每个HRegion对应了Table中的一个Region,HRegion中由多个HStore组成。每个HStore对应了Table中的一个Column Family的存储,可以看出每个Column Family其实就是一个集中的存储单元,因此最好将具备共同IO特性的column放在一个Column Family中,这样最高效。(百度百科)
HRegionServer把数据分布到一些称之为逗region地的单元中,region就是将一张大表格通过指定字段对数据进行排序,然后针对排序键的范围拆分出的结果(就像大表中的一小块)。每个region排序字段的值范围存储在一个单独的region中,被称为meta region。而region和meta region的对应关系被存储在root region中。长话短说,region服务器存储着一个层次树中,包含了root region、meta region以及data region。如果一个region服务器宕机,这个region服务器包含的region都不可以被访问直到被分配给了其它region服务器。因此产生了服务器宕机时间,直到那个region被恢复。

Cassandra (Cass) 是一个分布式数据库管理系统,而 PL/SQL 是 Oracle 数据库的一种编程语言。如果你在使用 Cass 时发现它画 PL/SQL 线路太卡,可能是因为以下原因:
1 服务器负载过高:如果服务器上的 CPU、内存和磁盘资源不足,会导致 Cass 的性能下降。这将影响到画 PL/SQL 线路的速度。
2 数据库设置错误:Cass 需要正确的配置才能正常运行。如果数据库设置不正确,它可能无法快速响应请求,从而导致画 PL/SQL 线路变得缓慢。
3 查询语句设计问题:如果查询语句的设计不合理,它可能会导致过多的数据传输和处理,从而使画 PL/SQL 线路的速度变慢。
4 网络连接问题:如果服务器与客户端之间的网络连接存在问题,比如延迟或者丢包,也会导致画 PL/SQL 线路的速度下降。
为了解决这些问题,可以考虑优化服务器资源、修复数据库设置、调整查询语句和优化网络连接等方面

1、Linux运维工程师

一般从企业入门到中级Linux运维工程师的工作大致有:挑选IDC机房及带宽、购买物理服务器或云服务、购买及使用CDN服务、搭建部署程序开发及用户的访问系统环境、对数据进行备份及恢复、处理网站运行中的各种故障、对网站的故障进行监控、解决网站运行的潜在安全问题、开发自动化脚本程序提高工作效率、规划网站架构、程序发布流程和规范,制定运维工作制度和规范、配合开发人员部署及调试产品研发需要的测试环境、代码发布等工作需求,公司如果较小可能还会兼职网管、网络工程师、数据库管理员、安全工程师、技术支持等职责。

2、Linux架构师

①自动化代码上线(SVN/GIT+Jenkins+MVN)解决方案;

②云计算部署架构及Docker微服务架构方案;

③服务自动化扩容方案(KVM/OpenStack/Docker+Ansible+Zabbix);

④10万并发的网站架构、秒杀系统的架构及解决方案;

⑤多IDC机房互联方案、全网数据备份解决方案、账号统一认证方案;

⑥数据库、存储及各重要服务节点的集群和高可用方案;

⑦各网络服务的极端优化方案、服务解耦/拆分;

⑧运维流程、制度、规范等的建设和推行;

⑨沟通能力、培训能力、项目管理、业务需求分析及落地执行力等。

3、数据库工程师

主要工作内容就是保证数据库数据的安全以及高效地为用户提供各种服务。工作内容主要有:数据库环境搭建、数据库优化、数据库备份恢复、数据库集群高可用、数据库数据统计分析、数据库数据可视化展示等。

涉及到的工具从早期传统的Oracle、Sql
Server,到当前互联网最火爆的MySQL,以及近年来崛起的NOSQL数据库Redis,Mongodb,Hbase,Cassandra等,对于高级数据库管理员、数据库架构师,还需要网络、系统、开发等能力。

4、运维开发工程师

运维开发工程师是介于运维工程师和开发工程师之间的岗位,简单地说就是开发和运维工作相关的工具、软件以及让运维数据自动化、智能化、可视化的平台产品。

5、运维经理

运维经理和运维总监是运维岗位的管理岗,和其他的部门领导一样,该岗位不但需要运维工程师、运维架构师的能力,同时还需要善于沟通、懂得团队激励、有培训能力、说服力。

ThingsBoard设计为:
扩展性:可水平扩展的平台使用领先的开源技术构建。
容错性:没有单点故障集群中的每个节点都是相同的。
健壮性:单个服务器节点可以根据使用情况处理以万级别的设备,集群可以处理数百万级别设备。
自定义:使用可自定义的部件和规则引擎节点可以轻松添加新功能。
持久化:永远不会丢失你的数据。
参见如下架构图及关键组件和相关接口。
通信
ThingsBoard提供了基于MQTT、>golang底层用什么语言实现的

Go runtime的调度器:
在了解Go的运行时的scheduler之前,需要先了解为什么需要它,因为我们可能会想,OS内核不是已经有一个线程scheduler了嘛?
熟悉POSIX API的人都知道,POSIX的方案在很大程度上是对Unix process进场模型的一个逻辑描述和扩展,两者有很多相似的地方。 Thread有自己的信号掩码,CPU affinity等。但是很多特征对于Go程序来说都是累赘。 尤其是context上下文切换的耗时。另一个原因是Go的垃圾回

workerman用什么语言实现的

Workerman是一款纯PHP开发的开源高性能的PHP socket 服务器框架。被广泛的用于手机app、移动通讯,微信小程序,手游服务端、网络游戏、PHP聊天室、硬件通讯、智能家居、车联网、物联网等领域的开发。 支持TCP长连接,支持Websocket、>

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/13476565.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-08-14
下一篇 2023-08-14

发表评论

登录后才能评论

评论列表(0条)

保存