小白想转行做大数据,怎么入行

小白想转行做大数据,怎么入行,第1张

数据现在这么火,想往大数据方面发展,但是英文、数学不好的可以吗?? 学习大数据该学哪些技术??大数据和程序员比哪个要好学点??等等。。。很多人学大数据的原因就是大数据找工作好找,薪资很高,,当然,为了这个原因也是可以的,毕竟这个时代就业压力确实很大,为了一个好的工作学一门技术,,但是我想问下你,你的专业是什么呢??对于计算机/软件,你的兴趣是什么?是计算机专业,对 *** 作系统、硬件、网络、服务器感兴趣?是软件专业,对软件开发、编程、写代码感兴趣?还是数学、统计学专业,对数据和数字特别感兴趣。。

其实说这些不是为了说明大数据有多难,只是告诉你这就是大数据的三个发展方向,平台搭建/优化/运维/监控、大数据开发/设计/架构、数据分析/挖掘。。这三个方面没有哪个容易学些、哪个薪资高些、哪个发展前景好些。。。

现如今大数据开源框架也是越来越多,举几个常用的例子:

文件存储:Hadoop HDFS、Tachyon、KFS

流式、实时计算:Storm、Spark Streaming、S4、Heron

K-V、NOSQL数据库:HBase、Redis、MongoDB

资源管理:YARN、Mesos

日志收集:Flume、Scribe、Logstash、Kibana

消息系统:Kafka、StormMQ、ZeroMQ、RabbitMQ

查询分析:Hive、Impala、Pig、Presto、Phoenix、SparkSQL、Drill、Flink、Kylin、Druid

分布式协调服务:Zookeeper

集群管理与监控:Ambari、Ganglia、Nagios、Cloudera Manager

数据挖掘、机器学习:Mahout、Spark MLLib

数据同步:Sqoop

任务调度:Oozie

上面有30多种框架了吧,哈哈,是不是有点慌了,虽然有这么多框架,别说全部精通了,就算是全会用的,估计现在也没有几个,就要看你在三个方面往哪个方面发展了。就拿第二个来说(开发/设计、架构),且先听听我的建议:

一、初识hadoop

Hadoop可以算是大数据存储和计算的开山鼻祖,现在大多开源的大数据框架都依赖Hadoop或者与它能很好的兼容。

关于Hadoop,你至少需要搞清楚以下是什么:

Hadoop 10、Hadoop 20

MapReduce、HDFS

NameNode、DataNode

JobTracker、TaskTracker

Yarn、ResourceManager、NodeManager

自己搭建Hadoop,请使用第一步和第二步,能让它跑起来就行。

建议先使用安装包命令行安装,不要使用管理工具安装。

另外:Hadoop10知道它就行了,现在都用Hadoop 20

二、更高效的WordCount

首先,你得先学习SQL,访问、查询数据库的基本语言还是要懂的。。然后SQL On Hadoop之Hive,Hive是数据仓库工具,数据仓库是逻辑上的概念,底层使用的是数据库,数据仓库的特点:数据全(海量)、稳定;所谓稳定,比如数据库的数据经常要更新,而数据仓库的数据是不会被更新,只会被查询,所以说Hive适合做数据仓库。最后就是了解hive的工作原理,学会Hive的工作命令。

三、把别处的数据搞到Hadoop上

四、把Hadoop上的数据搞到别处去

五、实例分析

六、实时数据

七、更新查询数据

八、高大上的机器学习

完成了第一、二,说明你已经快步入大数据的行列了,写的不好也请多多包涵。

详细了解 可登录网址:网页链接

大数据主要有以下职位: 1)数据分析师Data analyst:指熟悉相关业务,熟练搭建数据分析框架,掌握和使用相关的分析常用工具和基本的分析方法,进行数据搜集、整理、分析,针对数据分析结论给管理销售运营提供指导意义的分析意见。

数据分析是指用统计分析方法对收集的数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结并指导实际工作和生活。

(1)获取数据

获取相关的数据,是数据分析的前提。

(2)数据处理

获取数据,把数据处理成自己想要的东西。

(3)形成报告

把数据分析的结果可视化,展现出来。

首先,女生是适合学习大数据技术的,而且大数据行业内有很多岗位比较适合女生从事,比如数据整理、存储、分析等岗位都是不错的选择,但是由于大数据的知识体系比较复杂,所以学习起来也具有一定的难度。
大数据领域的岗位可以简单地划分为两大类,一类是研发型岗位,或者叫做创新型岗位,另一类是应用型岗位,或者叫技能型岗位。研发型岗位的难度比较大,往往需要从业者具有扎实的知识基础,同时要掌握一系列研究方法,对于工作环境也有相对较高的要求,比如需要较强的算力和数据支撑。
目前大数据领域的研发级岗位往往对于从业者的学历有较高的要求,不少人通过读研获得了研发级岗位,目前有不少女生在读研时,会选择大数据相关方向。从2019年的秋招来看,大数据领域的岗位相对比较多,可以选择的空间也比较大。
相对于研发级岗位来说,应用级岗位的学习难度要相对低很多,即使没有计算机知识基础,经过一个系统的学习过程,往往也能够从事一些大数据领域的岗位,比如数据采集、数据清洗、数据分析等岗位都比较适合女生来从事。
所以,在选择学习大数据知识的时候,应该根据自身的知识基础和能力特点来选择学习路线。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/13478121.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-08-15
下一篇 2023-08-15

发表评论

登录后才能评论

评论列表(0条)

保存