NAT模式
优点:集群中的物理服务器可以使用任何支持TCP/IP *** 作系统,物理服务器可以分配Internet的保留私有地址,只有负载均衡器需要一个合法的IP地址。
不足:扩展性有限。当服务器节点(普通PC服务器)数据增长到20个或更多时,负载均衡器将成为整个系统的瓶颈,因为所有的请求包和应答包都需要经过负载均衡器再生。假使TCP包的平均长度是536字节的话,平均包再生延迟时间大约为60us(在Pentium处理器上计算的,采用更快的处理器将使得这个延迟时间变短),负载均衡器的最大容许能力为893M/s,假定每台物理服务器的平台容许能力为400K/s来计算,负责均衡器能为22台物理服务器计算。
TUN模式
我们发现,许多Internet服务(例如WEB服务器)的请求包很短小,而应答包通常很大。
优点:负载均衡器只负责将请求包分发给物理服务器,而物理服务器将应答包直接发给用户。所以,负载均衡器能处理很巨大的请求量,这种方式,一台负载均衡能为超过100台的物理服务器服务,负载均衡器不再是系统的瓶颈。使用VS-TUN方式,如果你的负载均衡器拥有100M的全双工网卡的话,就能使得整个Virtual Server能达到1G的吞吐量。
不足:但是,这种方式需要所有的服务器支持”IP Tunneling”(IP Encapsulation)协议,我仅在Linux系统上实现了这个,如果你能让其它 *** 作系统支持,还在探索之中。
DR模式
优点:和VS-TUN一样,负载均衡器也只是分发请求,应答包通过单独的路由方法返回给客户端。与VS-TUN相比,VS-DR这种实现方式不需要隧道结构,因此可以使用大多数 *** 作系统做为物理服务器,其中包括:Linux 2036、229、2210、2212;Solaris 251、26、27;FreeBSD 31、32、33;NT40无需打补丁;IRIX 65;HPUX11等。
不足:要求负载均衡器的网卡必须与物理网卡在一个物理段上空调用来控制数据中心的温度和湿度,制冷与空调工程协会的“数据处理环境热准则”建议温度范围为20-25℃(68-75℉),湿度范围为40-55%,适宜数据中心环境的最大露点温度是17℃。
在数据中心电源会加热空气,除非热量被排除出去,否则环境温度就会上升,导致电子设备失灵。通过控制空气温度,服务器组件能够保持制造商规定的温度/湿度范围内。
空调系统通过冷却室内空气下降到露点帮助控制湿度,湿度太大,水可能在内部部件上开始凝结。如果在干燥的环境中,辅助加湿系统可以添加水蒸气,因为如果湿度太低,可能导致静电放电问题,可能会损坏元器件。
机房的温度和湿度以及防静电措施都有严格的要求,非专业项目人员一般不能进入,机房里的服务器运行着很多业务,例如移动的彩信、短消息,通话业务等。机房很重要,没有了机房,工作、生活都会受到极大影响,所以每个机房都要有专业人员管理,保证业务正常运行。
IDC机房采用活动地板下送风,电源机房采用上送风的方式精确控制机房空间的温度及湿度。机组制冷功率完全能满足机房设备制冷功率要求并有较大冗余,为客户的网络系统提供最佳运行条件。
扩展资料:
作为机房(电脑学习室/数据中心),它的物理环境是受到了严格控制的,主要分为几个方面:即温度、电源、地板、防火系统。
1、温度
说到温度,一般用的都是空调了。空调用来控制数据中心的温度和湿度,制冷与空调工程协会的“数据处理环境热准则”建议温度范围为20-25℃(68-75℉),湿度范围为40-55%,适宜数据中心环境的最大露点温度是17℃。
2、电源
机房的电源由一个或多个不间断电源(UPS)和/或柴油发电机组成备用电源。为了避免出现单点故障,所有电力系统,包括备用电源都是全冗余的。对于关键服务器来说,要同时连接到两个电源,以实现N+1冗余系统的可靠性。静态开关有时用来确保在发生电力故障时瞬间从一个电源切换到另一个电源。
3、地板
机房的地板相对瓷砖地板要提升60厘米(2英尺),这个高度随社会发展变得更高了,是80-100厘米,以提供更好的气流均匀分布。
这样空调系统可以把冷空气也灌到地板下,同时也为地下电力线布线提供更充足的空间,现代数据中心的数据电缆通常是经由高架电缆盘铺设的,但仍然有些人建议出于安全考虑还是应将数据线铺设到地板下,并考虑增加冷却系统。
小型数据中心里没有提升的地板可以不用防静电地板。计算机机柜往往被组织到一个热通道中,以便使空气流通效率最好。
4、防火系统
机房的防火系统包括无源和有源设计,以及防火行动执行计划。通常会安装烟雾探测器,在燃烧产生明火之前能够提前发现火警,在火势增大之前可以截断电源,使用灭火器手动灭火。
在数据中心是不能使用自动喷水灭火装置的,因为电子元器件遇水后通常会发生故障,特别是电源未截断的情况下使用水灭火情况会变得更糟。
即使安装了自动喷水灭火系统,清洁气体灭火系统也应早于自动喷水灭火系统启动。在数据中心还应该安装防火墙,这样可以将火源控制在局部范围内,即便是发生火灾也可以将损失减到最低。SR:单通道
DR:双通道
QR:四通道
目前内存条的种类有三种:UDIMM, RDIMM, LRDIMM。
1UDIMM:也称为Unbuffered DIMM。当数据从CPU传到每个内存颗粒时,UDIMM要求保证CPU到每个内存颗粒之间的数据传输距离相等,这样并行传输才会有效。这需要极高的制造工艺,极难做到高密度、高频率。因此UDIMM容量和频率都较低。不过,UDIMM由于在CPU和内存之间没有任何缓存,因此同频率下时延较小。目前常见的是单条容量2GB/4GB,最高主频也只能到达133GHz。
2RDIMM:也称为Registered DIMM。为了保证并行传输的有效性,RDIMM在内存条上加了一个寄存器进行转发。它位于CPU和内存颗粒之间,这样就减少了并行传输的距离。同时由于寄存器效率很高,因此RDIMM的密度和频率就容易提高。RDIMM目前是较为主流的内存条,单条容量在2~32GB之间,频率也有133GHz和16GHz两种选择。绝大多数2路通用配置的服务器出厂时通常都会配置这种类型的内存
3LRDIMM:也称为Load Reduced DIMM。RDIMM虽然提高了传输有效性,但由于寄存器大小有限,当单条内存中内存颗粒以最高的密度4 Rank进行部署时,并行传输的有效性和频率就会大大下降。例如在使用32G RDIMM时,在服务器的每个内存通道上最多只能部署2条内存条,而且只能运行在800MHz。 LRDIMM内存通过将当前RDIMM内存上的Register芯片改为一种iMB(isolation Memory Buffer)内存隔离缓冲芯片来降低内存总线的负载,并相应地进一步提升内存支持容量。相比于通常的RDIMM,Dual-Rank LRDIMM内存的功耗只有其50%,Quad-Rank LRDIMM也能低到其75%。目前,典型的Nehalem-EP处理器可以支持3个内存通道,每个内存通道最多支持3个RDIMM,而改用LRDIMM内存之后,同样的系统可以每通道支持到9个DIMM,内存容量提升到原来的三倍。网络的负载均衡是一种动态均衡技术,通过一些工具实时地分析数据包,掌握网络中的数据流量状况,把任务合理均衡地分配出去。这种技术基于现有网络结构,提供了一种扩展服务器带宽和增加服务器吞吐量的廉价有效的方法,加强了网络数据处理能力,提高了网络的灵活性和可用性。
以四台服务器为例实现负载均衡:
安装配置LVS
1 安装前准备:
(1)首先说明,LVS并不要求集群中的服务器规格划一,相反,可以根据服务器的不同配置和负载状况,调整负载分配策略,充分利用集群环境中的每一台服务器。如下表:
Srv Eth0 Eth0:0 Eth1 Eth1:0
vs1 10001 10002 192168101 19216810254
vsbak 10003 19216810102
real1 19216810100
real2 19216810101
其中,10002是允许用户访问的IP。
(2)这4台服务器中,vs1作为虚拟服务器(即负载平衡服务器),负责将用户的访问请求转发到集群内部的real1,real2,然后由real1,real2分别处理。
Client为客户端测试机器,可以为任意 *** 作系统。
(3)所有OS为redhat62,其中vs1 和vsbak 的核心是2219, 而且patch过ipvs的包, 所有real
server的Subnet mask 都是24位, vs1和vsbak 的1000 网段是24 位。
2理解LVS中的相关术语
(1) ipvsadm :ipvsadm是LVS的一个用户界面。在负载均衡器上编译、安装ipvsadm。
(2) 调度算法: LVS的负载均衡器有以下几种调度规则:Round-robin,简称rr;weighted
Round-robin,简称wrr;每个新的连接被轮流指派到每个物理服务器。Least-connected,简称lc;weighted
Least-connected,简称wlc,每个新的连接被分配到负担最小的服务器。
(3) Persistent client
connection,简称pcc,(持续的客户端连接,内核2210版以后才支持)。所有来自同一个IP的客户端将一直连接到同一个物理服务器。超时时间被设置为360秒。Pcc是为>
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)