选用什么云服务器做编程学习比较好?

选用什么云服务器做编程学习比较好?,第1张

我比较推荐cloud9 IDE这一个基于网页的集成开发环境,Cloud9 IDE是一个基于 NodeJS构建的JavaScript程序开发Web IDE。它拥有一个非常快的文本编辑器支持为JS, HTML, CSS和这几种的混合代码进行着色显示。Cloud9 IDE还为nodejs和Google Chrome集成调试器可以在IDE中启动、暂停和停止。能够在云计算环境中测试和部署你的代码。使用WebDAV,它还可以连到远程工作台。Cloud9 IDE拥有一个插件系统用来扩展现有功能,当前该IDE已经捆绑好几个插件。优势如下:

1。不需要配置,直接图形化界面新建项目既可获得一个全新的环境,不需要担心不同项目之间发生干扰出现问题。

2。功能齐全,开发、调试一应俱全,不需要配置,把重心放在学习上。

3。 服务器完全位于境外,避免了应用遇到中国特色的网络问题。

服务器完全位于云端,可以在windows,ipad,手机,mac os上无缝同步,把重点放在学习上而不是数据同步上。缺点是有一些限制:

1。免费版用户只能创建一个私有的项目,其他项目只能是公开的,既然题主是在学习,有一个私有的项目也足够用了,公开也没有问题。

2。貌似没有GPU,如果做机器学习之类GPU有优势的项目效率会很差。但是腾讯云好像也没有,如果有需求,建议让父母绑xyk上Google Compute Engine,最新政策可以免费用一年。

3。免费用户如果一周不登陆会被冻结项目,但是题主既然是学习,显然问题不大,项目不会是7X24运行,也不能三天打鱼两天晒网。

sina

Bigtable 是一个分布式的结构化数据存储系统,它被设计用来处理海量数据:通常是分布在数千台普通服务器上的PB 级的数据。Google 的很多项目使用Bigtable 存储数据,包括Web 索引、GoogleEarth、Google Finance。这些应用对Bigtable 提出的要求差异非常大,无论是在数据量上(从URL到网页到卫星图像)还是在响应速度上(从后端的批量处理到实时数据服务)。
Bigtable 已经实现了下面的几个目标:适用性广泛、可扩展、高性能和高可用性,Bigtable 是一个稀疏的、分布式的、持久化存储的多维度排序Map。

图一:一个存储Web 网页的例子的表的片断。行名是一个反向URL。contents 列族存放的是网页的内容,anchor 列族存放引用该网页的锚链接文本(alex 注:如果不知道HTML 的Anchor,请Google一把)。CNN 的主页被Sports Illustrater和MY-look 的主页引用,因此该行包含了名为“anchor:cnnsicom”和“anchhor:mylookca”的列。每个锚链接只有一个版本(alex 注:注意时间戳标识了列的版本,t9 和t8 分别标识了两个锚链接的版本);而contents 列则有三个版本,分别由时间戳t3,t5,和t6 标识。


Bigtable 通过行关键字的字典顺序来组织数据。表中的每个行都可以动态分区。每个分区叫做一个”Tablet”,Tablet 是数据分布和负载均衡调整的最小单位。

列族
Webtable 有个列族language,language 列族用来存放撰写网页的语言。
我们在language 列族中只使用一个列关键字,用来存放每个网页的语言标识ID。Webtable 中另一个有用的列族是anchor;这个列族的每一个列关键字代表一个锚链接,如图一所示。Anchor 列族的限定词是引用该网页的站点名;Anchor 列族每列的数据项存放的是链接文本。访问控制、磁盘和内存的使用统计都是在列族层面进行的。

时间戳
不同版本的数据通过时间戳来索引。Bigtable 时间戳的类型是64 位整型。
Bigtable 可以给时间戳赋值,用来表示精确到毫秒的“实时”时间;用户程序也可以给时间戳赋值。如果应用程序需要避免数据版本冲突,那么它必须自己生成具有唯一性的时间戳。数据项中,不同版本的数据按照时间戳倒序排序,即最新的数据排在最前面。为了减轻多个版本数据的管理负担,我们对每一个列族配有两个设置参数, Bigtable 通过这两个参数可以对废弃版本的数据自动进行垃圾收集。用户可以指定只保存最后n 个版本的数据,或者只保存“足够新”的版本的数据(比如,只保存最近7 天的内容写入的数据)。

Bigtable支持的其他特性
1、Bigtable 支持单行上的事务处理,利用这个功能,用户可以对存储在一个行关键字下的数据进行原子性的读-更新-写 *** 作。
2、Bigtable 允许把数据项用做整数计数器。
3、Bigtable 允许用户在服务器的地址空间内执行脚本程序
4、Bigtable 可以和MapReduce一起使用,MapReduce 是Google 开发的大规模并行计算框架。我们已经开发了一些Wrapper 类,通过使用这些Wrapper 类,Bigtable 可以作为MapReduce 框架的输入和输出。

Bigtable依赖于google的几项技术。用GFS来存储日志和数据文件;按SSTable文件格式存储数据;用Chubby管理元数据:
Bigtable是建立在其它的几个Google基础构件上的。BigTable 使用Google 的分布式文件系统(GFS)存储日志文件和数据文件。BigTable 集群通常运行在一个共享的机器池中,池中的机器还会运行其它的各种各样的分布式应用程序,BigTable 的进程经常要和其它应用的进程共享机器。BigTable 依赖集群管理系统来调度任务、管理共享的机器上的资源、处理机器的故障、以及监视机器的状态。
BigTable 内部存储数据的文件是Google SSTable 格式的。SSTable 是一个持久化的、排序的、不可更改的Map 结构,而Map 是一个key-value 映射的数据结构,key 和value 的值都是任意的Byte串,从内部看,SSTable 是一系列的数据块(通常每个块的大小是64KB,这个大小是可以配置的)。。SSTable 使用块索引(通常存储在SSTable 的最后)来定位数据块;在打开SSTable的时候,索引被加载到内存。每次查找都可以通过一次磁盘搜索完成:首先使用二分查找法在内存中的索引里找到数据块的位置,然后再从硬盘读取相应的数据块。也可以选择把整个SSTable 都放在内存中,这样就不必访问硬盘了。

BigTable 还依赖一个高可用的、序列化的分布式锁服务组件,叫做Chubby。Chubby有五个活跃副本,同时只有一个主副本提供服务,副本之间用Paxos算法维持一致性,Chubby提供了一个命名空间(包括一些目录和文件),每个目录和文件就是一个锁,Chubby的客户端必须和Chubby保持会话,客户端的会话若过期则会丢失所有的锁。

Bigtable 包括了三个主要的组件:链接到客户程序中的库、一个Master主服务器和多个Tablet片 服务器。
Bigtable会将表(table)进行分片,片(tablet)的大小维持在100-200MB范围,一旦超出范围就将分裂成更小的片,或者合并成更大的片。每个片服务器负责一定量的片,处理对其片的读写请求,以及片的分裂或合并。片服务器可以根据负载随时添加和删除。这里片服务器并不真实存储数据,而相当于一个连接Bigtable和GFS的代理,客户端的一些数据 *** 作都通过片服务器代理间接访问GFS。主服务器负责将片分配给片服务器,监控片服务器的添加和删除,平衡片服务器的负载,处理表和列族的创建等。注意,主服务器不存储任何片,不提供任何数据服务,也不提供片的定位信息。

客户端需要读写数据时,直接与片服务器联系。因为客户端并不需要从主服务器获取片的位置信息,所以大多数客户端从来不需要访问主服务器,主服务器的负载一般很轻。

Master 服务器主要负责以下工作:为Tablet 服务器分配Tablets、检测新加入的或者过期失效的Table 服务器、对Tablet 服务器进行负载均衡、以及对保存在GFS 上的文件进行垃圾收集。除此之外,它还处理对模式的相关修改 *** 作,例如建立表和列族。

我们使用一个三层的、类似B+树的结构存储Tablet 的位置信息。

第一层是一个存储在Chubby 中的文件,它包含了Root Tablet 的位置信息。这个Chubby文件属于Chubby服务的一部分,一旦Chubby不可用,就意味着丢失了root tablet的位置,整个Bigtable也就不可用了。
第二层是root tablet。root tablet其实是元数据表(METADATA table)的第一个分片,它保存着元数据表其它片的位置。root tablet很特别,为了保证树的深度不变,root tablet从不分裂。
第三层是其它的元数据片,它们和root tablet一起组成完整的元数据表。每个元数据片都包含了许多用户片的位置信息。

片的数据最终还是写到GFS里的,片在GFS里的物理形态就是若干个SSTable文件。下图展示了读写 *** 作基本情况。

BigTable和GFS的关系
集群包括主服务器和片服务器,主服务器负责将片分配给片服务器,而具体的数据服务则全权由片服务器负责。但是不要误以为片服务器真的存储了数据(除了内存中memtable的数据),数据的真实位置只有GFS才知道,主服务器将片分配给片服务器的意思应该是,片服务器获取了片的所有SSTable文件名,片服务器通过一些索引机制可以知道所需要的数据在哪个SSTable文件,然后从GFS中读取SSTable文件的数据,这个SSTable文件可能分布在好几台chunkserver上。
一个简化的Bigtable结构图:

结构图以Webtable表为例,表中存储了网易、百度和豆瓣的几个网页。当我们想查找百度贴吧昨天的网页内容,可以向Bigtable发出查询Webtable表的(combaidutieba, contents:, yesterday)。

假设客户端没有该缓存,那么Bigtable访问root tablet的片服务器,希望得到该网页所属的片的位置信息在哪个元数据片中。使用 METADATAWebtablecombaidutieba 为行键在root tablet中查找,定位到最后一个比它大的是 METADATAWebtablecombaidu>中信证券:徐涛 胡叶倩雯 郑泽科

我们多维度解读了海康威视的产品结构及详细分析了公司供应链情况,公司目前前端摄像头产品基本能实现国产化,中后端产品的供应链去美化难度高于前端设备,可寻找次优供应链替代方案。我们仍然看好公司的长期发展,维持“买入”评级。

多维度解读海康威视产品结构。

地区维度:2018年海康国内外营收占比分别为715%、285%,其中美国市场占比约5%;产品维度:2018年海康前、中、后端营收占比为54%、18%、14%;销售模式维度:根据我们测算,海康威视的纯硬件销售占比近四成,解决方案销售占比近五成;备货维度:公司截至2019Q1末的存货金额接近60亿,存货占比近10%,18年全年的存货周转率约515,周转天数约70天。

海康威视产品的供应链情况研究。

前端摄像头产品:编解码芯片、镜头等主要元器件基本实现国产化;AI芯片基本具备国产化能力;电源管理芯片目前部分采购自美国供应商,非A厂商具备替代方案。安防镜头的采购:以国内的舜宇光学 科技 、联合光电、福光股份等为主;CMOS传感器的采购:国内豪威 科技 (韦尔股份)、格科微等,高端部分来自索尼等;编解码芯片的采购:IPC以海思为主,ISP以富瀚微为主,国内厂商均占主流;电源管理芯片的采购:以TI、安霸等国际厂商为主,公司正积极导入非A供应商;新加入的AI芯片:实验室阶段主要采购英伟达GPU,目前国内的海思、寒武纪等厂商已可提供替代的SoC产品方案。

中后端产品:供应链去美化难度高于前端设备,可寻找次优供应链替代方案。

DVR/NVR芯片:供应商以海思为主。存储硬盘:安防主要采用机械硬盘,主要采购自希捷、西数,可采用高成本SSD方案替代。服务器CPU:公司目前服务器以x86架构为主,CPU供应商主要为Intel;国内厂商兆芯、海光正研制x86架构CPU,目前已有产品落地,性能上较国际大厂仍有距离;华为基于鲲鹏920芯片推出泰山服务器( ARM架构)。

投资策略。

我们长期仍看好公司视频安防领域智能化进步带来的放量,预计新业务爆发式增长将带来新的业绩增长点。我们维持2019/20/21年EPS预测137/167/204元,考虑到公司费用端全年承压,国际局势动荡等因素,我们按照2019年PE 25倍,给予目标价3425元,维持“买入”评级。

风险因素:

国际局势动荡,核心零部件禁运,公司费用率上升,下游需求疲弱,汇率风险等。

华为云上的漏洞扫描服务可以进行web漏洞扫描。网页漏洞扫描工具可以选择华为云漏洞扫描服务(VulnerabilityScanService,简称VSS),该服务集Web漏洞扫描、 *** 作系统漏洞扫描、资产及内容合规检测、安全配置基线检查、弱密码检测、开源合规及漏洞检查、移动应用安全检查七大核心功能为一体,自动发现网站或服务器在网络中的安全风险,为云上业务提供多维度的安全检测服务。

当下服务器信创国产化正在加速中,电力、金融、电信等领域大单频出。从近期的订单中可以看出,行业信创整体推进正在加快。电力、金融、电信等领域均有搭载国产CPU和 *** 作系统的国产服务器采购。相应的,随着底层国产化加大渗透,上层应用国产化需求亦有望快速放量。预计国产服务器销量这种双位数增长势头还会持续多年。

在信创和数字化转型的双重推动下,国产服务器出货量和出货金额稳步提升,并在多个行业投入使用,同时随着党政和八大行业信创项目的落地,国产服务器与国产服务器芯片的性能与可用性不断被验证,集采项目成为服务器芯片国产渗透率提高的重要推手之一。如中国电信的服务器集采中,标包8指定为全国产服务器,充分说明了行业头部对国产服务器性能和稳定性的认可。

另外从近日推出的“东数西算”政策来看,国产服务器厂商将会在算力资源服务、数据流通融合、数据安全防护等多维度积极参与进来。相信随着时间的推移,实现100%国产化率就变成了一个商业化决策,而不是一个能与不能的问题了,商业化一定需要多货源策略,通过市场竞争,实现每类部件的最高性价比,也确保供应链的可持续性,我们可以有理由相信,到2035年,国产服务器能占到绝大部分市场份额,数字可达70%以上,并且国产服务器应该也已经远销“一带一路”沿线国家了。

参考链接:国产信创服务器会有怎样的发展?

阿里云的产品致力于提升运维效率,降低IT成本,令使用者更专注于核心业务发展。
云服务器ECS
一种简单高效,处理能力可d性伸缩的计算服务。助您快速构建更稳定、安全的应用。提升运维效率,降低IT成本,使您更专注于核心业务创新。
云引擎ACE
一种d性、分布式的应用托管环境,支持Java、PHP、Python、Nodejs等多种语言环境。帮助开发者快速开发和部署服务端应用程序,并简化系统维护工作。搭载了丰富的分布式扩展服务,为应用程序提供强大助力。
d性伸缩
根据用户的业务需求和策略,自动调整其d性计算资源的管理服务。其能够在业务增长时自动增加ECS实例,并在业务下降时自动减少ECS实例。 
一种即开即用、稳定可靠、可d性伸缩的在线数据库服务。基于飞天分布式系统和高性能存储,RDS支持MySQL、SQL Server、PostgreSQL和PPAS(高度兼容Oracle)引擎,并且提供了容灾、备份、恢复、监控、迁移等方面的全套解决方案。
开放结构化数据服务OTS
构建在阿里云飞天分布式系统之上的 NoSQL数据库服务,提供海量结构化数据的存储和实时访问。OTS 以实例和表的形式组织数据,通过数据分片和负载均衡技术,实现规模上的无缝扩展。应用通过调用 OTS API / SDK 或者 *** 作管理控制台来使用 OTS 服务。
开放缓存服务OCS
在线缓存服务,为热点数据的访问提供高速响应。
键值存储KVStore for Redis
兼容开源Redis协议的Key-Value类型在线存储服务。KVStore支持字符串、链表、集合、有序集合、哈希表等多种数据类型,及事务(Transactions)、消息订阅与发布(Pub/Sub)等高级功能。通过内存+硬盘的存储方式,KVStore在提供高速数据读写能力的同时满足数据持久化需求。
数据传输
支持以数据库为核心的结构化存储产品之间的数据传输。 它是一种集数据迁移、数据订阅及数据实时同步于一体的数据传输服务。 数据传输的底层数据流基础设施为阿里双11异地双活基础架构, 为数千下游应用提供实时数据流,已在线上稳定运行3年之久。
对象存储OSS
阿里云对外提供的海量、安全和高可靠的云存储服务。RESTFul API的平台无关性,容量和处理能力的d性扩展,按实际容量付费真正使您专注于核心业务。
归档存储
作为阿里云数据存储产品体系的重要组成部分,致力于提供低成本、高可靠的数据归档服务,适合于海量数据的长期归档、备份。
消息服务
一种高效、可靠、安全、便捷、可d性扩展的分布式消息与通知服务。消息服务能够帮助应用开发者在他们应用的分布式组件上自由的传递数据,构建松耦合系统。
CDN
内容分发网络将源站内容分发至全国所有的节点,缩短用户查看对象的延迟,提高用户访问网站的响应速度与网站的可用性,解决网络带宽小、用户访问量大、网点分布不均等问题。 负载均衡
对多台云服务器进行流量分发的负载均衡服务。负载均衡可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。
专有网络VPC
帮助基于阿里云构建出一个隔离的网络环境。可以完全掌控自己的虚拟网络,包括选择自有 IP 地址范围、划分网段、配置路由表和网关等。也可以通过专线/***等连接方式将VPC与传统数据中心组成一个按需定制的网络环境,实现应用的平滑迁移上云。
开放数据处理服务ODPS
由阿里云自主研发,提供针对TB/PB级数据、实时性要求不高的分布式处理能力,应用于数据分析、挖掘、商业智能等领域。阿里巴巴的离线数据业务都运行在ODPS上。
采云间DPC
基于开放数据处理服务(ODPS)的DW/BI的工具解决方案。DPC提供全链路的易于上手的数据处理工具,包括ODPS IDE、任务调度、数据分析、报表制作和元数据管理等,可以大大降低用户在数据仓库和商业智能上的实施成本,加快实施进度。天弘基金、高德地图的数据团队基于DPC完成他们的大数据处理需求。
批量计算
一种适用于大规模并行批处理作业的分布式云服务。批量计算可支持海量作业并发规模,系统自动完成资源管理,作业调度和数据加载,并按实际使用量计费。批量计算广泛应用于**动画渲染,生物数据分析,多媒体转码,金融保险分析等领域。
数据集成
阿里集团对外提供的稳定高效、d性伸缩的数据同步平台,为阿里云大数据计算引擎(包括ODPS、分析型数据库、OSPS)提供离线(批量)、实时(流式)的数据进出通道。
DDoS防护服务
针对阿里云服务器在遭受大流量的DDoS攻击后导致服务不可用的情况下,推出的付费增值服务,用户可以通过配置高防IP,将攻击流量引流到高防IP,确保源站的稳定可靠。免费为阿里云上客户提供最高5G的DDoS防护能力。
安骑士
阿里云推出的一款免费云服务器安全管理软件,主要提供木马文件查杀、防密码暴力破解、高危漏洞修复等安全防护功能。
阿里绿网
基于深度学习技术及阿里巴巴多年的海量数据支撑, 提供多样化的内容识别服务,能有效帮助用户降低违规风险。
安全网络
一款集安全、加速和个性化负载均衡为一体的网络接入产品。用户通过接入安全网络,可以缓解业务被各种网络攻击造成的影响,提供就近访问的动态加速功能。
DDoS高防IP
针对互联网服务器(包括非阿里云主机)在遭受大流量的DDoS攻击后导致服务不可用的情况下,推出的付费增值服务,用户可以通过配置高防IP,将攻击流量引流到高防IP,确保源站的稳定可靠。
网络安全专家服务
在云盾DDoS高防IP服务的基础上,推出的安全代维托管服务。该服务由阿里云云盾的DDoS专家团队,为企业客户提供私家定制的DDoS防护策略优化、重大活动保障、人工值守等服务,让企业客户在日益严重的DDoS攻击下高枕无忧。
服务器安全托管
为云服务器提供定制化的安全防护策略、木马文件检测和高危漏洞检测与修复工作。当发生安全事件时,阿里云安全团队提供安全事件分析、响应,并进行系统防护策略的优化。
渗透测试服务
针对用户的网站或业务系统,通过模拟黑客攻击的方式,进行专业性的入侵尝试,评估出重大安全漏洞或隐患的增值服务。
态势感知
专为企业安全运维团队打造,结合云主机和全网的威胁情报,利用机器学习,进行安全大数据分析的威胁检测平台。可让客户全面、快速、准确地感知过去、现在、未来的安全威胁。
云监控
一个开放性的监控平台,可实时监控您的站点和服务器,并提供多种告警方式(短信,旺旺,邮件)以保证及时预警,为您的站点和服务器的正常运行保驾护航。
访问控制
一个稳定可靠的集中式访问控制服务。您可以通过访问控制将阿里云资源的访问及管理权限分配给您的企业成员或合作伙伴。 日志服务
针对日志收集、存储、查询和分析的服务。日志服务可收集云服务和应用程序生成的日志数据并编制索引,提供实时查询海量日志的能力。
开放搜索
解决用户结构化数据搜索需求的托管服务,支持数据结构、搜索排序、数据处理自由定制。 开放搜索为您的网站或应用程序提供简单、低成本、稳定、高效的搜索解决方案。
媒体转码
为多媒体数据提供的转码计算服务。它以经济、d性和高可扩展的音视频转换方法,将多媒体数据转码成适合在PC、TV以及移动终端上播放的格式。
性能测试
全球领先的SaaS性能测试平台,具有强大的分布式压测能力,可模拟海量用户真实的业务场景,让应用性能问题无所遁形。性能测试包含两个版本,Lite版适合于业务场景简单的系统,免费使用;企业版适合于承受大规模压力的系统,同时每月提供免费额度,可以满足大部分企业客户。
移动数据分析
一款移动App数据统计分析产品,提供通用的多维度用户行为分析,支持日志自主分析,助力移动开发者实现基于大数据技术的精细化运营、提升产品质量和体验、增强用户黏性。 阿里云旗下万网域名,连续19年蝉联域名市场NO1,近1000万个域名在万网注册!除域名外,提供云服务器、云虚拟主机、企业邮箱、建站市场、云解析等服务。2015年7月,阿里云官网与万网网站合二为一,万网旗下的域名、云虚拟主机、企业邮箱和建站市场等业务深度整合到阿里云官网,用户可以网站上完成网络创业的第一步。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/13490040.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-08-17
下一篇 2023-08-17

发表评论

登录后才能评论

评论列表(0条)

保存