1、8086:第一款PC处理器
8086是第一款面世的X86 CPU-在此之前,英特尔公司已经发布了4004,8008,8080,8085等CPU。8086可以使用外部20位地址总线管理1MB的内存。不过 IBM选定的477MHz速度实在是有些低了,在最终退市前它的速度可以达到10MHz。
世界上第一台PC使用的处理器就是8086的衍生品-仅有8位(外部)数据总线的8088。有趣的是,美国航天飞机上的控制系统用的就是8086处理,2002年的时候NASA(美国宇航局)还在eBay上购买了几块8086,因为英特尔早已不再供货了。
2、80286:支持16MB内存,依然是16位
发布于1982年的80286在同频率下性能要三倍于8086处理器。它可以支持16MB内存,不过依然是16 位处理器。它是第一款带有MMU(内存管理单元,memory management unit)模块的处理器,使得它可以管理虚拟内存。和8086一样,它也没有浮点运算单元(FPU),不过它可以使用X87协处理器。它的最大频率为 125MHz,相比之下,竞争对手的速度已经能够达到25MHz了。
3、80386:32位,高速缓存
英特尔公司的80386是第一款32位的X86处理器,有好几个版本存在,其中最知名的是16位数据总线的 386 SX(Single-word eXternal)和32位数据总线的386 DX(Double-word eXternal),其余的两个版本就不值一提了:386 SL首次提供了(外部)缓存管理功能,386 EX用在了太空计划中(哈勃望远镜使用的就是它)。
4、486:首次拥有APU(浮点运算单元)和Multipliers(乘法器)
486的出现则是一个时代的标志,很长时间内486 DX2/66都是游戏玩家的最低配置。这款发布于1989年的CPU带来了几项有趣的新功能:板载APU,数据缓存和第一个时钟乘法器。板载APU和 x87协处理器的搭配组成了486 DX(不是SX)系列。处理器内部拥有一块8KB L1缓存(写回速度比写入速度稍快些),同时也使主板上具备集成L2缓存的可能(运行在总线频率下)。
第二代486开始拥有一个CPU乘法器,随着DX2(2组乘法器)和DX4(3组乘法器)系列的发布,处理器的频率开始高于FSB(前端总线)的频率。还有一个小故事,作为486SX的APU出售的487SX实际上就是屏蔽掉部分核心的486DX。
5、Pentium:带来麻烦的BUG
1993年面世的Pentium引人注意的原因很多:放弃传统数字命名方式,因为Intel被禁止使用数字作为商标,最出名的就是它的一个BUG,第一代Pentium的某些除法 *** 作会产生不正确的结果,尽管英特尔很快更换了这些处理器,但是不良影响已经造成,这个罕见的BUG一度让IT媒体的报道铺天盖地。
Pentium总共有三个不同版本出售,最初的没有CPU乘法器,第二个版本带有一个乘法器(其包括著名的Pentium 166),最后的则开始支持X86架构的SIMD指令集-MMX,Pentium MMX还增加了L1缓存的大小,并做了小幅改进。这是英特尔公司第一款能同时执行两条指令的X86 CPU,它的L2缓存集成于主板上,运行频率等同FSB频率。
这里我们解释一下Pentium 的这个BUG:使用FPU进行的某些计算会导致不正确的结果。出现这个错误的几率非常罕见,况且Inel也迅速免费更换了问题产品。下面是Pentium出错的一个实列:
41958350/31457270 = 1333 820 449 136 241 002 (正确结果) 41958350/31457270 = 1333 739 068 902 037 589( 问题Pentium上的错误结果)
6、Pentium Pro:首次支持超过4GB的内存
发布于1995年的Pentium Pro是首款支持超过4GB内存的处理器,它利用36位物理地址扩展(PAE)技术最大可支持64GB内存。这款CPU也是第一款P6架构(酷睿2核心也源自于此)处理器,也是首次在CPU内部集成L2缓存。实际上256KB到1MB的缓存置于CPU核心旁边,而且与CPU同速,不再是板载方式。
这款CPU也有一个性能问题,运行32位程序性能很不错,但是运行16位程序(例如Windows 95系统)就就慢得多了,因为16位的寄存器管理32位的寄存器可能有些问题,这抵消了Pentium Pro的乱序执行架构的优势。
7、Pentium II and III: 同门兄弟
发布于1997年的Pentium II是Pentium Pro开始走向普通公众的产物(Pentium Pro叫好不叫座),整体上与Pentium Pro很相似,只是缓存方面有些不同,L2缓存不再与CPU核心保持同速(这么做的代价高昂),P II的512KB 缓存工作于CPU半速,另外Intel抛弃了传统的封装方式,开始把L2缓存也封装在外壳内部,不再像之前那样集成在主板上或者处理器内。
相比Pentium Pro,Pentium II原生支持MMX(SIMD)指令,拥有双倍的L2缓存。1999年发布的Pentium III(Katmai核心)除了支持SSE(SIMD)指令外其他方面与Pentium II是一样的。
Pentium II and III都有512KB L2缓存,但使用180nm工艺制造的Pentium II 移动版Dixon只有256KB L2缓存,不过这款处理器的运行速度比桌面版快多了。
8、Celeron and Xeon:瞄准低端/高端
90年代后期,Intel推出了两个熟知的品牌:Celeron(赛扬)and Xeon(至强)。前者瞄准入门级市场,后者意图染指服务器和工作站领域。第一代赛扬其实就是阉割掉L2缓存的Pentium II,当时其性能可以说非常烂,相比之下那时至强拥有更大的L2缓存。直到现在这两个品牌依然存在:面向入门级的赛扬(通常是减少L2缓存,降低FSB速度),以及面向服务器领域的至强(高频率,高FSB速度和大容量缓存)。
Intel后来还是给赛扬增加了L2缓存(只有128KB),其中赛扬300A凭借着50%的超频幅度长时间内都是市场上最炙手可热的明星产品。
与PⅡ一样,至强外壳内也有外置L2缓存,容量介于512KB到2MB之间,晶体管数量在31M到124M之间。
9、冲击1GHz的Pentium Ⅲ
Coppermine核心的Pentium Ⅲ是Intel历史上首款达到1Ghz的X86处理器,之后甚至推出了113GHz的型号,不过由于不稳定它很快退出了市场。新版Pentium Ⅲ提高了核心内的L2缓存容量,要比早期外置512KB L2缓存的型号运行的更快,Intel宣称它还可以加速网络冲浪。共有三个版本的P Ⅲ发布:服务器级(Xeon),入门级(Celeron),移动版(第一次引入SpeedStep技能技术)。
2002年又发布了一个改进版:Tualatin(图拉丁)奔三,其拥有512KB L2缓存,使用更先进的130nm工艺制造。原本它是Intel准备用于服务器和移动市场的,因而它在消费级市场也只是昙花一现,并不为人熟知。
10、Pentium 4:高噪音低性能的代名词
2000年Intel宣布了新一代的处理器-Pentium 4。尽管有着更高的时钟频率(最低速度都达到了14GHz),但是同频率的性能表现比竞争对手的要差远了,ADM的Athlon(甚至是自家的 Pentium Ⅲ)在相同的频率下都比它运行的快。最要命的是,Intel决定弃主流的内存规格不顾,只支持RAMBUS的RDRAM内存(当时唯一能满足 Pentium 4带宽需求的内存),但是最后失败了。尽管价格昂贵,发热量也大,Pentium 4依靠多项技术改进(如加入L3缓存,支持超线程技术)还是在市场上生存了几年。
市场上一共有Mobile(新增了一组变量乘法器),Clerlon(精简了L2缓存),Xeon(加入L3缓存)三种P4处理器有售。超线程技术和L3首先出现在服务器市场上,之后引入到了普通处理器上(L3缓存也只是出现在EE至尊级型号上)。
这里提一下FSB,借着名为QDR(四倍速数据传输)技术的支持它的速度要四倍快于额定时钟频率。400MHz的总线速度实际上只有100MHz,533MHz也只有133MHz的真实速度。2005年Intel还发布了64位P4处理器,后文我们将谈到它。
11、Pentium M:在膝上型电脑市场上开始发力
2003年Portable PC(便携型电脑)市场开始爆发式地增长。此时Intel只有两款CPU可供选择:落后的图拉丁P3和P4,但P4巨大的发热量决定了它不可能适于便携型电脑处理。就在此时,从以色列实验室来了一个救星:Banias(又名Pentium M)。这款基于P6架构(与Pentium Pro一样)的处理器拥有超越P4的高性能,而且功耗超低。它成了英特尔迅驰(Centrino)平台的处理器,在2004年又被更快的Dothan核心取代。Pentium M在移动平台留下了深深的烙印,Stealey(A100)至今还在使用Dothan架构(只不过频率低些功耗低些罢了)。
与桌面版P4一样,其FSB也是四倍速于额定频率(QDR),插槽使用了Socket 479,实际上只有478个针脚,不过每个针脚的定义与桌面P4的Socket 478不一样。
12、Pentium 4:开始支持64位,变身双核
2005年Intel两次改进了P4处理器:先是带来Prescott-2M,接着又发布了Smithfiel核心产品。前者是基于Proscott的64位处理器,后者是一款双核处理器。他们和P4很相似,面临的问题是也是一样的:低IPC(每周期指令)运算量,难于提高频率。这两款处理器已经不是Intel重点关注的了,(他们的重心在未来的酷睿2),何况Pentium D说是双核心处理器,实际不过是在一个外壳里封装了两个Proscott核心罢了。
有趣的是,虽然面向消费级市场的P4并不支持PAE技术(使用36位而非32位管理内存),因此最大支持内存被限制在4GB,但它可以突破这个限制。实际上地址总线依然限于36位(Xeon上是40位),但PAE技术已经成了历史―64位程序可以可以充分利用所有内存。
某些特定型号上可以支持超线程技术(Xeon和EE至尊版),Intel稍后又发布了65nm的9x0系列P4,不过并没有什么重要改进。
13、第一款移动版双核
2006年Intel宣布了酷睿双核处理器。这是第一款面向便携式电脑设计的双核处理器,拥有极佳的性能,至少比P4快多了。这也是第一款真双核X86处理器,共享缓存设计,之前的Pentium D双核更像是一个外壳内封装两个处理器。酷睿处理器是Intel迅驰平台的重要组成部分,在市场上取得了巨大的成功。唯一的缺点就是还是32位处理器,不像P 4那样支持64位技术。
单核的Core Solo也出现在了市场上,这款追求低功耗的产品FSB速度由667 MHz降到了533MHz,它被应用在了服务器上(代号Sossaman)。这也是专为移动设计的CPU首次用在服务器领域。实际上酷睿处理器没有使用酷睿2处理器的架构,在便携PC市场上它很快被Merom核心的酷睿2取代了。另外,Yonah核心的Socket 479插槽和Pentium M的Socket 479插槽是不一样的(尽管名字一样)。
14、今天的中流砥柱:酷睿2
2006年Intel发布了酷睿2处理器,接着它就变成了市场上的抢手货。这款源自Pentium M的处理器拥有全新的Core架构。此前Intel有两个产品线:专注桌面市场的P4和主攻移动市场的Pentium M,二者还共同构筑了服务器产品线。而现在,Intel只需要一个微架构就可以满足各个产品线,一个64位的酷睿2就可以打遍从低端到高端,从桌面,到便携再到服务器的所有领域。
酷睿2架构在市场上拥有众多型号,主要根据配置的不同来划分等级,包括核心数量的不同(从1到4,单核到四核),缓存大小(从512KB到12MB),FSB快慢(从400MHz到1600MHz)。
下表所示的是最初的酷睿2数据,不过最新的45nm版也同样适用。
移动版Merom规格大体相同,只是FSB略微降低了些,而EE至尊版速度更快些。酷睿2也有四核的,实际上只是两个Core核心封装在一起。45nm酷睿2(Penryn)缓存更大,发热量更低,但是基本架构根跟上面的差不多。
15、未来:Nehalem,Atom等等
当然这些只是本文的一部分,有关AMD处理器(也包括AMD-ATI显卡在内)的第二部马上就要来到。Intel X86处理器的故事不会随着Core 2 Duo结束,有关Intel未来处理器的部分已经在计划中,因为Nehalem,Atom也是X86处理器。而且据透露,Intel进入显卡市场的 Larrabee也是基于X86处理器核心的。
转自:>先讲讲英特尔吧。
•1968年~1972年
1968年
7月18日,罗伯特•诺伊斯和戈登•摩尔离开仙童半导体,投资创建诺伊斯-摩尔电子公司。后来公司支付15万美元从INTLECO公司买到了“INTEL”名字的使用权,并更名为英特尔公司。
诺伊斯和摩尔各出资245万美元,风险资本家阿瑟•罗克出资1万美元并募集了250万美元投资。
罗克出任公司董事会主席,罗伯特•诺伊斯任CEO,戈登•摩尔出任执行副总裁,公司在加州山景城正式运营。
1969年
英特尔发布了第一款产品3010 Schottky双极随机存储器(RAM)。
英特尔发布世界上首款金属氧化物半导体(MOS)静态随机存储器(static RAM)1101。
英特尔从汉密尔顿电子公司(Hamilton Electric)接到成立以来的第一份定单。
英特尔在瑞士日内瓦建立第一个美国本土之外的销售办公室。
1970年
英特尔发布1103动态随机存储器(DRAM)。
英特尔年收入突破400万美元。
英特尔在加州圣克拉拉城购买了26英亩土地,建造第一个厂房。
1971年
英特尔在在11月15日的《电子新闻》上刊登广告宣布“一个集成电子新纪元的到来”,第一款4位微处理器4004面世,时钟频率为108KHz,内含2300个晶体管,从此揭开了CPU发展的序幕。
英特尔发布世界上首款可擦写编程只读存储器(EPROM)。
英特尔以每股235美元公开上市,筹集了680万美元。
英特尔单月销售额首次突破100万美元。
英特尔公司第一个工厂正式启用。
1972年
英特尔公司第一个非美国本土的工厂启用,位于马来西亚槟榔屿。
英特尔公司8位微处理器8008,时钟频率为200KHz。
英特尔购并Microma公司,进入新兴的数字手表市场。
英特尔启用3英寸硅晶片生产线生产计算机芯片。
•1973年~1977年
1973年
英特尔第一家自有晶片厂正式启用,地点在加州利弗莫尔市。
英特尔单月销售额突破300万美元。
基尔代尔开发了PC史上革命性的微处理程序设计语言PL/M。
1974年
英特尔发布首款真正的通用微处理器Intel 8080,时钟频率为2MHz。
英特尔第一个国外设计中心启用,地点在以色列海法。
英特尔发布容量4K的动态随机存储器2107。
1975年
8080微处理器被用于Altair8800,这是最早的个人电脑之一。
罗伯特•诺伊斯被任命为英特尔董事会主席,戈登•摩尔成为公司总裁,安迪•格罗夫为执行副总裁。
英特尔推出多总线(MULTIBUS)。
1976年
英特尔发布世界上首款微控制器8748和8048,在单一硅芯片上结合了中央处理器、存储器、外围设备以及输入输出功能。
英特尔发布世界上第一台单板计算机iSBC80/10。
英特尔启用4英寸硅晶片生产线生产芯片。
英特尔发布时钟频率为5MHz的8085微处理器。
英特尔与AMD达成专利交叉使用协议,从而使AMD能够使用Intel的微代码。
1977年
英特尔开始生产磁泡存储器(Magnetic Bubble Memory),这项业务延续了11年之久。
英特尔推出容量16K的2716 EPROM。
英特尔发布首款单芯片多媒体数字信号编解码器(codec)2910,成为电讯业工业标准。
•1978年~1982年
1978年
英特尔推出16位微处理器8086,时钟频率为477MHz。
英特尔员工突破1万名。
英特尔退出数字手表业务,Miceoma品牌卖给了一家瑞士公司,存货则卖给了Timex公司。
1979年
英特尔推出8088微处理器(8060的低价版本),内含29000个晶体管,时钟频率为477MHz。
英特尔首次进入《财富》杂志的500强,位居第486位。
戈登•摩尔出任英特尔董事会主席兼CEO,罗伯特•诺伊斯任副主席,安迪•格罗夫成为总裁兼COO。
罗伯特•诺伊斯被美国总统卡特授予国家科学勋章。
英特尔发布2920信号处理器,这是首款能对模拟型号进行实时数字处理的微处理器。
1980年
英特尔、数字设备公司(DEC)和施乐宣布合作开发以太网,以使不同机器能够通过局域网连接。
英特尔发布8087数字协处理器,把复杂的数字功能从微处理器中剥离,以提高性能。
英特尔发布历史上销售成绩最佳的8051和8751微控制器。
1981年
IBM选择了8088作为IBM PC的微处理器,从此开创了PC时代。
英特尔为加快新产品进入市场,实行了“125%的解决方案”,要求雇员每周自愿增加25%的工作量而没有任何额外补偿。
英特尔发布32位的iAPX 432微处理器,但这款处理器并没有在市场上获得成功。
1982年
英特尔推出80286的微处理器,内含134万个晶体管,PC产业真正开始腾飞。在随后的六年时间里,全球售出大约1500万台基于286微处理器的PC。
IBM宣布以25亿美元收购英特尔12%的股份,以帮助英特尔熬过产业不景气阶段,而后在1984年又以1亿多美元追加收购了5%的股份。1987年,随着产业环境的好转,IBM出售了这些股份。
英特尔发布首款网络控制器82586,从主处理器剥离出网络功能从而提高系统性能。
英特尔的首款16位微控制器8096进入市场。
•1983年~1987年
1983年
英特尔发布CHMOS技术,在推动芯片性能增长的同时减少了能耗。
英特尔年收入达到10亿美元。
英特尔开始用6英寸硅晶片生产线生产芯片。
1984年
IBM发布采用Intel 286处理器的PC-AT,采用开放的系统,奠定了X86系统结构在PC市场的统治地位。
英特尔发布世界上首款CHMOS动态随机存储器,容量为256K。
安迪•格罗夫被《财富》周刊评为“美国十大最严厉的老板”之一。
美国议会通过《半导体芯片保护法案》,允许半导体制造商取得他线路设计的版权,这一法案成为英特尔保护其发展的重要工具。
1985年
英特尔做出痛苦的选择,把公司主营业务从最初的DRAM转向微处理器。
英特尔推出32位的386处理器,内含275万个晶体管。
英特尔推出iPSC/1,进入超级计算机业务。
1986年
美日半导体贸易协定签署,日本对美国半导体制造商开放市场。
美国法院规定微码(植入硅芯片的软件)同样适用美国著作权法。
英特尔发布容量1M的可擦写可编程只读存储器27010、27011和27210。
1987年
安迪•格罗夫被任命为公司总裁兼CEO。
罗伯特•诺伊斯被美国总统罗纳德•里根授予全国技术勋章。
公司推出第二代iPSC/2超级计算机,它基于大量的英特尔386处理器和80387数字协处理器。
•1988年~1992年
1988年
公司发布ETOX(EPROM Tunnel Oxide)技术,进入闪存领域。
罗伯特•诺伊斯成为SEMATECH总裁兼CEO,这是一个旨在保持美国在半导体制造研究领域最前沿地位的企业联盟。
1989年
英特尔推出首款商用处理器i860,内含超过100万个晶体管。
英特尔推出80486微处理器,内含120万个晶体管。
1990年
英特尔的共同创始人罗伯特•诺伊斯因心脏病突发去世。
英特尔发布首款NetPort打印服务器,使打印机能够很便捷的连接到局域网并实现共享。
美国总统乔治•布什(老布什)授予戈登•摩尔全国技术勋章。
克雷格•贝瑞特出任英特尔执行副总裁。
1991年
英特尔正式开展“Intel Inside”品牌推广计划,这一LOGO在后来屡受指控。
英特尔在一个月之内发布了包括EtherExpress配适卡在内23款网络产品。
公司宣布将中止EPROM的开发,转向闪存。
1992年
根据市场研究机构Datequest的信息显示,英特尔已经成为世界第一大半导体供应商。
公司采用8英寸硅晶片生产线生产芯片。
英特尔发布82420芯片组,公司正式进入芯片组领域。
•1993年~1997年
1993年
英特尔推出Pentium(奔腾)处理器(俗称586),集成了310万个晶体管。
克雷格•贝瑞特被任命为公司执行副总裁兼COO,戈登•摩尔留任公司董事会主席,安迪•格罗夫仍担任总裁兼CEO。
英特尔被《金融世界》(Financial World)杂志评为世界第三最有价值品牌。
PCMCIA标准面世,使便携式电脑能够很容易的加入调制解调器、声卡、网络配适器等设备,英特尔是该项标准的创建者之一。
1994年
公司发布首款LANDesk网络管理软件产品,能够实现软件区分、病毒防护、远程诊断以及其它计算机网络功能。
奔腾处理器发现浮点缺陷,英特尔耗资47亿美元更换所有芯片以及改进芯片设计。
英特尔协助定义即插即用标准,使PC添加外围设备更加简便。
1995年
英特尔推出专为服务器和工作站设计的Pentimu Pro处理器,内含550万个的晶体管。
英特尔发布82430FX芯片组。
英特尔扩张其网络设备产品线,推出集线器、交换机、路由器和其他网络产品。
1996年
英特尔推出采用了MMX(多媒体增强指令集)技术的Pentium处理器。
1997年
英特尔推出Pentium Ⅱ处理器,集成了750万个晶体管。
英特尔发布StrataFlash存储器,实现在单个存储单元中存储多位数据,大幅增加闪存容量。
安迪•格罗夫被《时代周刊》评为年度风云人物。
克雷格•贝瑞特成为公司总裁,安迪•格罗夫成为董事会主席,戈登摩尔则退任公司名誉主席。
•1998年~2002年
1998年
英特尔推出Celeron(赛扬)处理器。
英特尔推出Pentium Ⅱ Xeon(至强)处理器。
英特尔发布首款基于StrongARM结构体系的高性能、低能耗处理器,用于手持计算和通讯设备。
1999年
英特尔发布Pentium Ⅲ处理器,内含900万个晶体管。
英特尔发布Pentium Ⅲ Xeon处理器。
英特尔进一步扩展网络产品线,推出IXP1200网络处理器和相关产品。
2000年
无线应用成为发展重点,英特尔发布Xscale微架构体系和数款无线网卡。
英特尔发布Pentium 4处理器,集成了4200万个晶体管。
2001年
英特尔的共同创始人戈登•摩尔正式退休。
英特尔推出用于工作站和服务器的首款64位Itanium(安腾)处理器。
英特尔发布Xeon处理器。
英特尔制造出世界上最小最快的晶体管,宽仅15毫微米(1毫微米为十亿分之一米)。
2002年
英特尔开始在300毫米(12英寸)晶片上采用013微米技术制造芯片产品。
保罗•欧德宁成为公司总裁兼COO, 克雷格•贝瑞特仍担任CEO,戈登•格罗夫留任董事会主席。
英特尔发布超线程(Hyper-Threading)技术,这种技术能使一个处理器能同时运行多线程任务,从而提高多任务环境中的系统性能。
美国总统乔治•W•布什(小布什)向戈登•格罗夫颁发总统自由勋章。
公司发布专为高性能服务器和工作站设计的Itanium(安腾)2处理器。
•2003年~2005年
2003年
Intel累计销售处理器达到10亿片。
英特尔发布专用于迅驰移动技术,这种技术具有高性能、电池使用时间长、集成了无线联网能力等特点,可以使笔记本电脑变得更加轻巧。Pentium M处理器是Centrino的核心。
英特尔推出PXA800F蜂窝处理器,这是一款把蜂窝电话和手持电脑关键结构完全集成与单个晶片的微芯片。
2004年
2004年Intel公司推出的64位至强处理器,是英特尔迄今为止推出的最成功的企业级64位服务器产品。
2005年
推出双内核英特尔至强处理器。
推出欢悦平台
英特尔信息技术峰会聚焦多内核平台
超越主频的全新平台架构
英特尔加强支持64位计算 经济型电脑专用英特尔® 赛扬® D 处理器闪亮登场
英特尔公布第二季度收入突破92亿美元 每股收益33美分
英特尔架构服务器喜获双内核动力 英特尔推出双内核入门级服务器平台
新架构带来更出色性能 英特尔安腾2处理器采用更快的前端总线
英特尔将提前推出双内核、超线程(HT)服务器平台
英特尔公司开发超低功耗制程 新型65纳米制程将进一步延长移动设备的电池使用时间
领先企业和技术计算供应商创立安腾® 解决方案联盟,全新、广泛的行业支持计划将加速安腾® 解决方案的上市进程
全新双核英特尔® 至强® 处理器面世,英特尔发运多核服务器平台
2005 年秋季英特尔信息技术峰会,多核平台成就无限机遇
英特尔推出 90 纳米多级单元针对多媒体手机的高性能 NOR 闪存
•2006年~至今
2006年
英特尔第四季度收入 102 亿美元;每股收益 40 美分
英特尔在全球率先取得 45 纳米芯片制程技术开发重大成功
英特尔酷睿双核处理器登陆嵌入式市场
采用英特尔® 酷睿™ 微架构的电脑即将面世
英特尔下一代企业平台即将闪亮登场
英特尔新的高产量65纳米工厂开张
英特尔将向中国企业提供下一代BIOS核心技术
英特尔公司宣布进行重组—预计成本和运营开支将在2007年降低20亿美元,2008年降低30亿美元
英特尔推出嵌入式英特尔酷睿2双核处理器
高效节能 超越未来——英特尔2006年秋季信息技术峰会在上海举行
英特尔开启四核时代——全球最佳处理器,性能再创造新高
2007年
英特尔第四季度收入97亿美元
英特尔发布晶体管技术重大突破,为40年来计算机芯片之最大革新
英特尔信息技术峰会北京首发
在进入嵌入计算行业30年之际,英特尔推出四核处理器
多核时代虚拟化应用助推器在京发布
英特尔第二季度收入达87亿美元
英特尔在京发布刀片服务器平台开放规格
全新英特尔服务器处理器 速度与能效的极致选择
再来讲AMD。
AMD创办于1969年,当时公司的规模很小,但是从那时起到现在,AMD一直在不断地发展,目前已经成为一家年收入高达24亿美元的跨国公司。下面将介绍决定AMD发展方向的重要事件、推动AMD向前发展的主要力量,并按时间顺序回顾AMD各年大事。
1969-74 - 寻找机会
在公司刚成立时,所有员工只能在创始人之一的JohnCarey的起居室中办公,但不久他们便迁往美国加州圣克拉拉,租用一家地毯店铺后面的两个房间作为办公地点。到当年9月份,AMD已经筹得所需的资金,可以开始生产,并迁往加州森尼韦尔的901 Thompson Place,这是AMD的第一个永久性办公地点。
在创办初期,AMD的主要业务是为其它公司重新设计产品,提高它们的速度和效率,并以"第二供应商"的方式向市场提供这些产品。
1969年5月1日--AMD公司以10万美元的启动资金正式成立。
1969年9月--AMD公司迁往位于901 Thompson Place,Sunnyvale 的新总部。
1969年11月--Fab 1产出第一个优良芯片--Am9300,这是一款4位MSI移位寄存器。
1970年5月--AMD成立一周年。这时AMD已经拥有54名员工和18种产品,但是还没有销售额。
1970--推出一个自行开发的产品--Am2501。
1972年11月--开始在新落成的902 Thompson Place 厂房中生产晶圆。
1972年9月--AMD上市,以每股15美元的价格发行了525万股。
1973年1月--AMD在马来西亚槟榔屿设立了第一个海外生产基地,以进行大批量生产。
1974--AMD以2650万美元的销售额结束第五个财年。
1974-79 - 定义未来
AMD在第二个五年的发展让全世界体会到了它最持久的优点--坚忍不拔。尽管美国经济在1974到75年之间经历了一场严重的衰退,AMD公司的销售额也受到了一定的影响,但是仍然在此期间增长到了168亿美元,这意味着平均年综合增长率超过60%。
1974--位于森尼韦尔的915 DeGuigne建成。
1975--AMD通过AM9102进入RAM市场。
1975--AMD的产品线加入8080A标准处理器和AM2900系列。
1976--AMD和Intel签署专利相互授权协议。
1977--西门子和AMD创建Advanced Micro Computers (AMC) 公司。
1978--AMD在马尼拉设立一个组装生产基地。
1978--AMD的销售额达到了一个重要的里程碑:年度总营业额达到1亿美元。
1978--奥斯丁生产基地开始动工。
1979--奥斯丁生产基地投入使用。
1979--AMD在纽约股票交易所上市。
1980 - 1983 - 寻求卓越
在20世纪80年代早期,两个著名的标志代表了AMD的处境。第一个是所谓的"芦笋时代",它代表了该公司力求增加它向市场提供的专利产品数量的决心。与这种高利润的农作物一样,专利产品的开发需要相当长的时间,但是最终会给前期投资带来满意的回报。第二个标志是一个巨大的海浪。AMD将它作为"追赶潮流"招募活动的核心标志,并用这股浪潮表示集成电路领域的一种不可阻挡的力量。
AMD的研发投资一直领先于业内其他厂商。在1981财年结束时,该公司的销售额比1979财年增长了一倍以上。在此期间,AMD扩建了它的厂房和生产基地,并着重在得克萨斯州建造新的生产设施。AMD在圣安东尼奥建起了新的生产基地,并扩建了奥斯丁的厂房。AMD迅速地成为了全球半导体市场中的一个重要竞争者。
1981--AMD的芯片被用于建造哥伦比亚号航天飞机。
1981--圣安东尼奥生产基地建成。
1981--AMD和Intel决定延续并扩大他们原先的专利相互授权协议。
1982--奥斯丁的第一条只需4名员工的生产线(MMP)开始投入使用。
1982--AMD和Intel签署围绕iAPX86微处理器和周边设备的技术交换协议。
1983--AMD推出当时业内最高的质量标准INTSTD1000。
1984-1989 - 经受严峻考验
在1986年,变革大潮开始席卷整个行业。日本半导体厂商逐渐在内存市场中占据了主导地位,而这个市场一直是AMD业务的主要支柱。同时,一场严重的经济衰退冲击了整个计算机市场,限制了人们对于各种芯片的需求。AMD和半导体行业的其他公司都致力于在日益艰难的市场环境中寻找新的竞争手段。
到了1989,Jerry Sanders开始考虑改革:改组整个公司,以求在新的市场中赢得竞争优势。AMD开始通过设立亚微米研发中心,加强自己的亚微米制造能力。
1984--曼谷生产基地开始动工。
1984--奥斯丁的第二个厂房开始动工。
1985--AMD首次进入财富500强。
1985--位于奥斯丁的Fabs 14 和15投入使用。
1985--AMD启动自由芯片计划。
1986--AMD推出29300系列32位芯片。
1986--AMD推出业界第一款1M比特的EPROM。
1986年10月--由于长时间的经济衰退,AMD宣布了10多年来的首次裁员计划。
1987--AMD与sony公司共同设立了一家CMOS技术公司。
1987年4月--AMD向Intel公司提起法律诉讼。
1987年4月--AMD和 Monolithic Memories公司达成并购协议。
1988年10月--SDC开始动工。
1989年9月4日- 展开变革
AMD在这段时期的发展主要是通过提供越来越具竞争力的产品,不断地开发出对于大批量生产至关重要的制造和处理技术,以及加强与战略性合作伙伴的合作关系而实现的。在这段时期,与基础设施、软件、技术和OEM合作伙伴的合作关系非常重要,它使得AMD能够带领整个行业向创新的平台和产品发展,在市场中再次引入竞争。
1995--富士-AMD半导体有限公司(FASL)的联合生产基地开始动工。
1995--Fab 25建成。
1996--AMD收购NexGen。
1996--AMD在德累斯顿动工修建Fab 30。
1997--AMD推出AMD-K6处理器。
1998--AMD在微处理器论坛上发布AMD速龙处理器(以前的代号为K7)。
1999--AMD推出AMD速龙处理器,它是业界第一款支持Microsoft Windows计算的第七代处理器。
2000--AMD在第一季度的销售额首次超过了10亿美元,打破了公司的销售记录。
2000--AMD的Dresden Fab 30开始首次供货。
2001--AMD推出AMD 速龙 XP处理器。
2001--AMD推出面向服务器和工作站的AMD 速龙 MP 双处理器。
2002--AMD 和UMC宣布建立全面的伙伴关系,共同拥有和管理一个位于新加坡的300-mm晶圆制造中心,并合作开发先进的处理技术设备。
2002--AMD收购Alchemy Semiconductor,建立个人连接解决方案业务部门。
2002--Hector Ruiz接替Jerry Sanders,担任AMD的首席执行官。
2002--AMD推出第一款基于MirrorBit(TM) 架构的闪存设备。
2003-AMD 推出面向服务器和工作站的AMD Opteron(TM)(皓龙) 处理器。
2003-AMD 推出面向台式电脑 和笔记簿电脑的AMD 速龙(TM) 64处理器。
2003-AMD推出 AMD 速龙(TM) 64 FX处理器 使基于AMD 速龙(TM) 64 FX处理器的系统能提供影院级计算性能。
2006至今--融聚与分拆
2006年7月24日AMD正式宣布54亿美元并购ATI,新公司将以AMD的名义运作。
AMD2006年10月25日宣布完成对加拿大ATI公司价值约54亿美元的并购案。
根据双方交易条款,AMD以42亿美元现金和5700万股AMD普通股收购截止2006年7月21日发行的ATI公司全部的普通股,通过此次并购, AMD在处理器领域的领先技术将与ATI公司在图形处理、芯片组和消费电子领域的优势完美结合,AMD将于2007年推出以客户为导向的技术平台,满足客户开发差异化解决方案的需求。
AMD同时将继续开发业界最好的处理器产品,让客户可以根据自身需求选择最佳的技术组合;从2008年起,AMD将超越现有的技术布局,改造处理器技术,推出整合处理器和绘图处理器的芯片平台。
2008年10月8日, AMD闪电宣布分拆其制造业务,与阿布扎比一家简称ATIC的高科技投资公司合资成立名为Foundry的新制造公司,引起全球IT界的轰动。根据协议,AMD将把德国德累斯顿的两家生产工厂以及相关的资产及知识产权全盘转入合资公司。AMD将拥有合资公司444%股份,ATIC则持有其余股份。至此,AMD彻底转型为一家芯片设计公司。
英特尔公司(Intel Corporation)(NASDAQ:INTC,港交所:4335),总部位于美国加州,工程技术部和销售部以及6个芯片制造工厂位于美国俄勒冈州波特兰。英特尔的创始人罗伯特·诺伊斯(Robert Noyce)和戈登·摩尔(Gordon Moore)原本希望他们新公司的名称为两人名字的组合——Moore Noyce,但当他们去工商局登记时,却发现这个名字已经被一家连锁酒店抢先注册。不得已,他们采取了“Integrated Electronics(集成电子)”两个单词的缩写为公司名称。现任CEO是布莱恩·科兹安尼克(Brian Krzanich) 。
英特尔公司在随着个人电脑普及,英特尔公司成为世界上最大设计和生产半导体的科技巨擘。为全球日益发展的计算机工业提供建筑模块,包括微处理器、芯片组、板卡、系统及软件等。这些产品为标准计算机架构的组成部分。业界利用这些产品为最终用户设计制造出先进的计算机。英特尔公司致力于在客户机、服务器、网络通讯、互联网解决方案和互联网服务方面为日益兴起的全球互联网经济提供建筑模块。
具体研究领域包括音频/视频信号处理和基于PC的相关应用,以及可以推动未来微结构和下一代处理器设计的高级编译技术和运行时刻系统研究。另外还有英特尔中国软件实验室、英特尔架构开发实验室、英特尔互联网交换架构实验室、英特尔无线技术开发中心。除此之外,英特尔还与国内著名大学和研究机构,如中国科学院计算所针对IA-64位编译器进行了共同研究开发,并取得了可喜的成绩。
英特尔公司于1968年由罗伯特·诺伊斯、戈登·摩尔和安迪·格鲁夫创建于美国硅谷,经过近 40 年的发展,英特尔公司在芯片创新、技术开发、产品与平台等领域奠定了全球领先的地位,并始终引领着相关行业的技术产品创新及产业与市场的发展。
英特尔为计算机工业提供关键元件,包括性能卓越的微处理器、芯片组、板卡、系统及软件等,这些产品是标准计算机架构的重要组成部分。英特尔一直坚守“创新”理念,根据市场和产业趋势变化不断自我调整。从微米到纳米制程,从 4 位到 64 位微处理器,从奔腾® 到酷睿 TM,从硅技术、微架构到芯片与平台创新,英特尔不间断地为行业注入新鲜活力,并联合产业合作伙伴开发创新产品,推动行业标准的制定,从而为世界各地的用户带来更加精彩的体验。
英特尔公司设有多个运营部门:数字企业事业部、移动事业部、数字家庭事业部、数字医疗事业部和渠道平台事业部。2006 年,英特尔全球年收入达到 354 亿美元。
在1999年的时候英特尔公司市值最高突破了5000亿美元, 最高峰为5090亿美元, 相当于2012年的7025亿美元
2014年4月9日,英特尔公司将关闭旗下位于哥斯达黎加的组装和测试工厂,并裁减1500名员工。
引领创新科技的英特尔同样也会遭遇信息化难题,但它有能力也有勇气率先迈出变革的步伐。11月4日,英特尔首席信息官、副总裁Diane Bryant在上海紫竹科学园接受了本报记者的独家专访,详细阐述了英特尔的数据中心整合计划,这将是支撑英特尔未来发展的战略性一步。
芯片帝国的后盾
在英特尔内部,计算应用主要分为四类,可以用“DOME”来概括――设计(D)、办公(O)、制造(M)、企业应用(E)。其中,半导体设计占用了大部分服务器资源,并且预期还将以每年15%~23%的速度不断增长;企业应用、办公、制造的服务器需求也在稳步增长;存储需求更是达到了平均每年40%以上的增长速度。这一切,都要依靠英特尔的数据中心来实现,这是英特尔大规模全球计算环境的核心。
分享一组惊人的数字:截至2008年2月,英特尔拥有116个数据中心,管理的服务器为77000台。在此之前的高峰时期,与英特尔的并购直接相关,英特尔的数据中心竟达到了140个,管理难度可想而知。尽管Diane Bryant领导的英特尔信息技术部门对英特尔的业务需求提供了有力支持,但他们也认识到,是时候制定一项全面的长期战略来规划数据中心的投资和容量了。一些中小规模数据中心面临散热、功耗或空间限制,而此时的英特尔已有足够的经验构建更经济高效的大规模、高密度数据中心,无需再逐个改造。同时,借助一系列技术手段,英特尔可以在全新数据中心中实现在多个计算领域灵活分配资源,从更高的层面上规划容量,并且将不同部门为满足各自应用需求累计的400多个不同的参考设计标准化,这也是有效推进绿色IT的路径。
英特尔的核心竞争力之一是大规模而且高效率的工厂。在产品更新换代时,它可以针对大批量生产高效调整,从而保证供货周期。而通过精确复制(Copy Exactly)战略,英特尔分布于全球的半导体工厂几乎可以做到多厂一面,这样就可以迅速响应英特尔的业务变化。英特尔数据中心效率核心小组在今年年初撰写的《英特尔信息技术白皮书》中指出,“我们的最终目标是像半导体工厂那样运行数据中心环境,以同样高的效率和相应能力来满足业务需求。”同时,通过数据中心的全面规划,英特尔信息技术部门还预计节省10亿美元的运营成本。
八年战略进行时
围绕这一目标,英特尔信息技术部门已着手制定一项企业范围的八年战略,并已经开始有序推进。其核心是改造英特尔位于全球的数据中心环境,重在进行标准化,提高计算利用率,并减少数据中心的数量。保证这项计划顺利推进成为了Diane Bryant肩上的一项重任。“我们从2007年开始进行数据中心整合项目,当时有140个数据中心,现在已经整合到了80个,未来可能还会整合到50个甚至40个。这些数据中心将形成英特尔分布在全球的8个战略节点。”
位于亚洲的战略节点将设在上海。“8个战略节点选址的出发点就是必须离核心业务要近,比如有大规模设计中心或者占据较高业务比例的地方。同时在每个战略枢纽之下还设有多个高效率数据中心,并不是一个战略节点就是一幢建筑。”Diane Bryant介绍说,工程计算占用80%的服务器资源环境,需要高性能大容量的网格,此时高使用率的高性能计算环境非常重要,而且技术人员之间的交流互动非常密集,他们需要服务器能做到快速响应,这是选址考虑的关键。另外20%的服务器资源主要用于企业应用,这个环境主要是通过虚拟化来提高使用效率。“行业平均利用率大概只有15%,我们希望借助虚拟化技术把利用率提高到50%~60%。” 完成了战略节点部署之后,英特尔基本形成了一个面向内部用户的云计算解决方案。“我们还要确保的就是其安全性,而且未来也希望在企业运用的范围之内,确保应用和工作负载更加顺畅地在整个架构之间流动。”
这项宏伟计划将在8年时间内完成,英特尔数据中心的服务器更新换代的周期为4年。“实现数据中心的高效率是我们的最终目标,数据中心整合是其中的重要部分,是帮助我们实现数据中心高效率的方法。”Diane Bryant说,实现这一目标要综合采用很多技术手段,比如服务器整合、虚拟化技术、数据中心能耗管理,以及整个数据中心的冷却、能耗、布局等,并最终提交一个更有效的数据中心解决方案,使得英特尔整个跨全球数据中心的基础设施网络有效运作。
据Diane Bryant介绍,这项计划主要分三步完成:第一步是加速服务器更新换代,英特尔现有的四核处理器以及其他节能、高能效技术可以做到使服务器的每瓦性能不断提高,而且需要数据中心的空间占用也会更小;第二步是虚拟化,英特尔的硬件平台已经具备了优秀的虚拟化支持能力,英特尔数据中心借助虚拟化技术进一步充分利用仍在不断增加的计算能力,把使用效率提高,并且通过网格计算,消除物理、地理和部门的界限,使得服务器共享成为可能。第三步就是数据中心整合了,英特尔已经在使用一些衡量指标来判断数据中心的效率,将关闭那些效率低、规模小的数据中心。” Diane Bryant着重强调,“数据中心最终达到的效率指标更加重要,而不是数据中心的绝对数量,效率是第一位考量的对象。”
新技术抢鲜实践
Diane Bryant曾经在DEG(数字企业事业部)担任重要职位,这个部门面向企业级用户,以服务器业务为主。“我以前的主要工作就是与财富500强企业的CIO进行沟通,了解他们存在哪些难题,希望实现什么目标,以及英特尔的技术怎么能为他们提供更多价值。”履新英特尔CIO职位之后,Diane Bryant的角色和视角都从IT技术开发者转向了IT技术的应用实践者。近水楼台,由Diane Bryant领导的英特尔信息技术部门也就理所当然地成为了英特尔最新技术的试验田。
在英特尔信息技术部门内部,与运维部门并列的还有开发部门。信息技术部门采用的产品就是经过这个部门充分论证的,他们会考量市场上的新技术,并与内部需求相结合,以求证这些技术和产品应用的效果。这些新技术当然有相当一部分就是英特尔面向数据中心提出的新技术。“我们部门在英特尔内部就是高效、绿色计算技术的最终用户。通过使用这些新技术,能为我们的业务带来更多战略价值,或者说我们是作为一个载体,来证明英特尔倡导的新技术具有更强的价值。”Diane Bryant介绍说,英特尔信息技术部门应用最新的处理器技术加速了服务器更新,并率先且广泛采用了虚拟化、SSD、刀片服务器等大量IT前沿技术和产品。同时,他们还在使用一项Low Power Manager技术。这种集成的能源监控和管理应用,可以针对某个服务器动态地分配能源并控制发热量,基于服务器工作负载的调控使得数据中心的电力使用实现最优化。通过诸如此类的新技术应用,来适应新一代数据中心对高能效、高性能、高效率的需求。
从这个角度来说,英特尔的信息技术部门是新技术的实践者,因为该部门基于事实的论证已经充分证明了这些技术对于数据中心用户的业务是有价值的。而从另一个角度来看,这个部门本身也是新技术的输出者。英特尔信息技术部门同时也开发出一些如新式热量回收系统、新式IT基础架构建设等方面的成果,并应用于俄勒冈高密度数据中心这样的新建数据中心,积累了大量数据中心整合的优秀理念和做法。英特尔信息技术部门与同行之间也要进行定期交流,这就为英特尔从技术到实践的全方位输出提供了可信平台。把英特尔的经验和教训分享给这些用户,他们就可以少走很多弯路。
整合见显著成效
尽管以数据中心整合为代表的英特尔效率提升计划仍然处于持续发展阶段,但从目前情况来看,在网格计算、企业服务器整合与虚拟化领域,英特尔信息技术部门已经取得了显著成效。面向设计的网格计算使得英特尔自2006 年以来,服务器利用率提高了11% ,从而使英特尔在 2007 年资本并购中节省资金超过3000万美元,在 2008年资本并购中节省资金约7700万美元。目前,大约40%的批处理作业都在远程运行。英特尔信息技术部门开发了多种工具来实现这一目标,包括一个可为遍布多个数据中心的服务器池分配工作的调度程序,以及可在30分钟内为多达100 台服务器自动配置 *** 作系统的软件等。在提高利用率的同时,还进一步减少了许多项目的吞吐时间,这将帮助设计小组按时或提前完成项目。
而在企业服务器整合与虚拟化方面,英特尔已经着手将企业计算工作负载整合,即将15~20台旧服务器的工作负载整合到基于多核至强的全新虚拟化服务器之上的虚拟机中。这样的整合过程使服务器数量减少约1800台,并且预留出一定的扩展空间。英特尔还验证了虚拟化的主要运营目标,目前已经在一台物理机上托管11台虚拟机,并将工作负载从一台物理机转移到另一台物理机来执行预防性维护。同时,英特尔还在尝试更迅速地提供新的应用实例,以便更快地响应业务需求。
成本控制的学问
虽然英特尔在IT基础架构方面的投资很下血本,每年的信息化预算达到了13亿美元左右,支撑着这个部门的高速运转。但毫无疑问,信息技术部门在提供支撑企业运营及未来发展的战略价值基础上,还应该缩减长期的运营成本,因为它并非是单纯的成本中心的概念。实现这样的目标也是Diane Bryant和她领导的信息技术部门的价值所在,他们将通过多种途径来解决各部分的成本压缩问题。数据中心无疑是节省开支的重点,这部分开支大约要达到9亿美元,占总体开支的比重最大。
Diane Bryant表示,“英特尔信息技术部门去年、今年和明年的预算是基本持平的,不会有太大波动,我们的目标就是在预算基本保持不增不减的状态之下,把维持日常业务运作的IT投入减少,从而把节约下来的成本用于投入一些更具有战略性意义的IT项目,如Business Intelligence(商业智能)等应用来支持英特尔的未来业务发展,并通过技术手段进一步减少供应链或者生产制造这部分的成本。” Gartner的调查结果显示,行业里平均67%的IT预算都用于维护业务的日常运作。对英特尔来讲,正在进行的大规模数据中心整合,提高数据中心效率,就是希望把数据中心日常维护的这部分成本降下来,“我们的目标是达到现在开支的70%左右”。
硬件的成本节省已经逐步实现,比如服务器更新/撤除策略的成功实施将降低2007~2014年间的现金成本,降幅约为238亿美元。而从数据中心的TCO角度来看,软件成本占据的比例也很高,大约是整体成本的43%左右,相当于服务器与存储成本的两倍。英特尔也同样在应用虚拟化等技术来实现降低软件应用方面的开支。而随着英特尔数据中心始终向共享标准服务迈进,远离定制解决方案,英特尔也将提供有关其计算环境性能与成本的更多详细信息。
在金融海啸席卷全球的时刻,CIO对于成本和投资的考量自然也比以往更为慎重。Diane Bryant认为,在经济大形势遇到困境时,IT部门的投资不应该因此减少,“我们的经验是,在困难的时候,IT部门反而是投资最后被削减和减少的部门,我预见企业未来在IT方面的投入应该不会减低。”因为IT目前仍然是一种有效的技术手段,可以为用户提升生产效率和运营效率,并为未来经济复苏后的发展做好先期准备。“我们在实施数据中心效率提高项目的同时,还会不断进行技术投入,也会不断实施新的IT项目。”
数据中心的未来
从目前的发展状况来看,现阶段的数据中心应该模块化,具有更大的灵活性已经成为业界共识。那下一代的数据中心将是什么样的?英特尔信息技术部门将给数据中心用户提供哪些建议?Diane Bryant表示, “我们希望下一代数据中心的服务器性能继续不断提高;与此同时,要能降低能耗,实现运营成本缩减,并且充分利用灵活的虚拟化技术来提高服务器的整体使用效率。”
动态分配负荷则被Diane Bryant认为是未来提升数据中心效率的重要趋势之一。“不管你把它称之为虚拟20还是其他,这项技术的关键是针对工作负载分配电力,或者根据不同电力来进行动态资源分配,而且这一点在设计数据中心时就必须考虑到。”Diane Bryant解释说,在设计阶段,肯定要把最差的情况考虑进去。比如最高负荷会达到什么程度,或者最高温度能达到多高。“在未来,我觉得要让数据中心效率更高,动态分配资源非常重要。比如数据中心的某个位置使用效率很高并导致过热,那就可以动态地把这些负荷转到其他温度低的位置。”
对于那些正处于数据中心筹建阶段的中国用户,Diane Bryant建议,英特尔位于俄勒冈的数据中心项目可以称得上是高效率数据中心的典范,其建设经验可供参考。同时,未来是不是能获得更多电力,是数据中心扩展要考虑的关键要素,计算密度增加势必要造成电力能耗水涨船高。而container(集装箱)数据中心也许会提供一个新思路,即固定空间、固定能耗管理的前提下部署计算能力的集装箱式移动数据中心,这也是英特尔正在论证的一项技术。“到底是大规模的数据中心合适,还是container数据中心更适用,关键要取决于用户的需求到底是什么,愿意一次性或者有能力投入多少成本。” Diane Bryant表示,“从技术角度来讲,未来每个数据中心其实能提供的计算能力增强是非常明显的。技术将实现未来在同样空间里能进行的计算密度是不断增加,或者做同样工作所需的空间进一步减少。”
相关链接:未来一年的后续步骤
数据中心整合
在最终制定数据中心整合计划的同时,还将构建一个资产与应用库存,以优化并管理整体环境。英特尔将根据大量因素,包括业务价值以及实现关闭的简易程度来划分数据中心关闭的优先级。此外,还试图将数据中心重新用作实验室,从而避免产生建筑或租赁费用。
网格计算
英特尔计划将利用率从当前的66%进一步提高至80%,从而可能额外节省数千万美元。此外,还计划将设计批处理计算整合到三个数据中心。与此同时,英特尔还将通过把某些重新配置能力集成到调度程序中,来进一步优化根据需求重新配置服务器的能力。预计这样将能使英特尔通过针对输入工作负载的需求定制中枢服务器池的配置,来更快地响应需求变化。
服务器及存储优化
继续把工作负载整合到全新多核英特尔至强处理器中,同时对应用和服务器性能进行说明,从而为更广泛的整合奠定坚实基础。英特尔将对标准化参考平台上的全新工作负载进行验证,通过融合用于跟踪物理服务器上虚拟机的部署与迁移的工具和流程,进一步提高对虚拟化服务器的支持力度。英特尔还计划在所有计算领域中部署水平共享存储服务,以提高支持人员对存储容量的比率,有效地提高信息技术部门的支持能力。
应用与工作流特征
全面、正式地介绍企业应用环境对于数据中心整合计划至关重要。采用相关工具来分析系统与网络层次的应用行为,并且开发一些流程来全面了解和记录应用行为。在对各个应用进行概要分析之后,下一步将是介绍整个工作流。目标是全面了解整套应用及其从属关系,以便确切了解将应用迁移到不同的数据中心将会对工作流造成何种影响。风风雨雨38年 英特尔桌面处理器发展史
CPU是Central Processing Unit,就是中央处理器的缩写,它是计算机中最重要的一个部分,由运算器和控制器组成。如果把计算机比作一个人,那么CPU就是他的心脏,其重要作用由此可见一斑。按照其处理信息的字长,CPU可以分为:四位微处理器、八位微处理器、十六位微处理器、三十二位微处理器以及六十四位微处理器等等。
英特尔公司Logo
成立于1968年的英特尔公司,作为全球最大的芯片制造商,同时也是计算机、网络和通信产品的领先制造商,英特尔走过了风风雨雨的38年,具有技术产品创新和领导产业发展的38年。回首过去,英特尔的产品,影响了整个IT业的发展,成就了不知多少IT界的精英和经典事件。
1971年11月15日:世界上第一块个人微型处理器4004诞生
1971年11月15日,Intel公司的工程师霍夫发明了世界上第一个商用微处理器—4004,从此这一天被当作具有全球IT界里程碑意义的日子而被永远的载入了史册。这款4位微处理器虽然只有45条指令,每秒也只能执行5万条指令,运行速度只有108KHz,甚至比不上1946年世界第一台计算机ENIAC。但它的集成度却要高很多,集成晶体管2300只,
一块4004的重量还不到一盅司。这一突破性的发明最先应用于Busicom计算器,为无生命体和个人计算机的智能嵌入铺平了道路。
4004微处理器
Busicom最初计划是需要12个定制芯片。而英特尔工程师霍夫提出了通用逻辑设备的概念,它可能是一个更出色、更高效的解决方案。正是由于他的提议才使得微处理器得以开发。起初,Busicom向英特尔支付了60000美元,获得了微处理器所有权。在认识到“大脑”芯片的无限潜力之后,英特尔提出用60000美元换回微处理器设计的所有权。Busicom同意了英特尔的请求。1971年11月15日,英特尔面向全球市场推出了4004微处理器,每个售价为200美元。
4004微处理器
编号为4004,第一个“4”代表此芯片是客户订购的产品编号,后一个“4”代表此芯片是英特尔公司制作的第四个订制芯片。这种数字代号却延用至今。霍夫终于如愿以偿,他在世界第一个微处理器上,集成了2000多个晶体管,发明了世界第一块大规模集成电路4004,在电子计算机历史上,写下了光辉的一页。4004芯片基本具备了微处理器的特点,用它来做计算器,改变了传统计算器的形象。采用4004芯片后,再配用一块程序存储器,数据存储器,移位寄存器,再加上键盘和数码管,就构成了一台完整的微型计算机。
1972年:8008 微处理器
让英特尔以外的是推出4004芯片后,业内的反应相当平淡。一些分析家称这款芯片虽然有些意思,但4004的处理能力实在有限,还不足以引起人们的兴趣。然而,当一年后英特尔推出其8008微处理器时,业内的目光都几乎集中到了英特尔身上。8008频率为200Khz,晶体管的总数已经达到了3500个,能处理8比特的数据。更为重要的是,英特尔还首次获得了处理器的指令技术。
8008微处理器
8008它的性能是4004的两倍,拥有3500晶体管数量,速度为200KHz,并且于1974年被一款名为Mark-8的设备采用,Mark-8是第一批家用计算机之一,此时台式机基本上形成了一个最初雏形。
8008芯片原本是为德克萨斯州的Datapoint公司设计的,但是这家公司最终却没有足够的财力支付这笔费用。于是双方达成协议,英特尔拥有这款芯片所有的知识产权,而且还获得了由Datapoint公司开发的指令集。这套指令集奠定了今天英特尔公司X86系列微处理器指令集的基础。
1974年:8080微处理器
在微处理器发展初期,具有革新意义的芯片非Intel8080莫属了。英特尔公司于1974年推出了这款划时代的处理器,立即引起了业界的轰动。由于采用了复杂的指令集以及40管脚封装,8080的处理能力大为提高,其功能是8008的10倍,每秒能执行29万条指令,集成晶体管数目6000,运行速度2MHz。与此同时,微处理器的优势已经被业内人士所认同,于是更多的公司开始接入这一领域,竞争开始变得日益激烈。当时与英特尔同台竞技的有RCA(美国无线电公司)、Honeywell、Fairchild、美国国家半导体公司、AMD、摩托罗拉以及Zilog公司。值得一提的是Zilog,世界上第一块4004芯片的设计者Faggin就加盟了该公司。由该公司推出的Z80微处理器比Intel8080功能更为强大,而且直到今天这款处理器仍然被尊为经典。
8080微处理器
8080有幸成为了第一款个人计算机Altair的大脑。据说Altair这个名称是源自《星际旅行》电视节目中一个星际飞行计划(Starship Enterprise)的目的地名称。计算机爱好者花费395美元即可购得 Altair 套件。数月内,Altair的销售量达到数万台,造成了电脑销售历史上第一次缺货现象。这足以看出来8080对于电脑发展是具有划时代意义的。
1978 年:8086-8088微处理器
1978年,英特尔推出了首枚16位微处理器8086,同时生产出与之配合的数学协处理器8087,这两种芯片使用相同的指令集,以后英特尔生产的处理器,均对其兼容。趁着市场销售正好的时机,以及市场需求的提升,Intel在同一年推出了性能更出色的8088处理器。三款处理器都拥有29000只晶体管,速度可分为5MHz、8MHz、10MHz,内部数据总线(处理器内部传输数据的总线)、外部数据总线(处理器外部传输数据的总线)均为16位,地址总线为20位,可寻址1MB内存。首次在商业市场给消费者提供了更自由选择。
8086微处理器
8088微处理器
同时Intel成功将 8088 销售给 IBM全新的个人计算机部门,1981年,IBM推出的首批个人电脑机选用了英特尔8088芯片,使得8088成为了IBM全新热销产品IBM PC的大脑。本来IBM准备采用摩托罗拉的芯片,但是最终阴差阳错,还是由8088芯片承担了这项光荣的使命。随着个人电脑的流行,英特尔也开始名扬四海。8088的大获成功使英特尔顺利跻身财富500强之列,《财富》杂志将该公司评为“七十大商业奇迹之一(Business Triumphs of the Seventies)”。事后,英特尔高度评价了与IBM这笔交易的重要性。的确,如果没有这笔交易,很可能现在芯片市场是由摩托罗拉等一统天下。
1982年:80286微处理器 英特尔的最后一块16位处理器
80286(也称286)是处理器进入全新技术的标准产品,具备16位字长,集成了143万只晶体管,具有6MHz、8MHz、10MHz、125 MHz四个主频的产品。286是Intel第一款具有完全兼容性的处理器,即可以运行所有针对其前代处理器编写的软件,这一软件兼容性也成为了Intel处理器家族一个恒久不变的特点。该产品发布后的6年内,全世界基于286处理器的个人计算机便达到了大约1500万台。
80286微处理器
80286微处理器
1985年:80386 英特尔的第一代32位处理器
此后,英特尔的微处理器开始进入到了32位时代。为适应企业的全球化发展,1985年秋,英特尔再度发力,并且以一种特殊的形式在伦敦、慕尼黑、巴黎、旧金山和东京同时推出了Intel 80386处理器。这是英特尔第一款32位处理器,集成了27万5千只晶体管,超过了4004芯片的一百倍,每秒可以处理500万条指令。同时也是第一款具有“多任务”功能的处理器,所谓“多任务”就是说它可以同时处理多个程序程序的指令,这对微软的 *** 作系统发展有着重要的影响。
80386微处理器
80386微处理器
Intel RapidCAD 被遗忘的微处理器
还有一款微处理器被很多人忽视,这就是Intel RapidCAD。RapidCAD是英特尔有史以来第一款为旧款个人计算机所提供的升级套件(也就是OverDrive的始祖)。原386的使用者不需要更换主机板,只要把RapidCAD买回来将主机板上旧有的中央处理器芯片(CPU)替换掉,就可以享受接近486的运算能力。RapidCAD其实就是把486 DX芯片去掉内部高速缓存然后装入386的封装里面,RapidCAD也不支持486增加的新指令。不过由于386封装的频宽限制,RapidCAD对整体的效能提升比不上直接升级到486 DX。相同频率下,486 DX可以有比386/387快上两倍的速度,而RapidCAD在整数运算方面最多只能提升35%,在浮点运算方面,则可以提升将近70%。
Intel RapidCAD
Intel RapidCAD特殊的地方在于,它是由两颗芯片组成,缺一不可。这归咎于486 DX内建浮点运算器(FPU),而386则是将浮点运算器分开(就是387)。由于RapidCAD-1本身就含有浮点运算器(因为它就是486 DX阉割版),根本不需要387,所以RapidCAD-2就是用来替代原来主机板上的387芯片。RapidCAD-1负责所有的运算,而RapidCAD-2则是负责假装浮点运算器,以防止旧有主机板以为没有安装浮点运算功能(尤其在执行286/287的程序时)。市面上有时候把RapidCAD-1与RapidCAD-2分开卖,这是就是不了解RapidCAD运作方式的结果。
1989年:Intel 80486 英特尔最后一款以数字为编号的处理器
1989年,英特尔发布了Intel80486处理器。486处理器是英特尔非常成功的商业项目。很多厂商也看清了英特尔处理器的发展规律,因此很快就随着英特尔的营销战而转型成功。80486处理器集成了125万个晶体管,时钟频率由25MHz逐步提升到33MHz、40MHz、50MHz及后来的100Mhz。
Intel80486处理器
486处理器的应用意味着用户从此摆脱了命令形式的计算机,进入“选中并点击(point-and-click)”的计算时代。史密森学会美国历史国家博物馆的技术历史学家 David K Allison 回忆道:“当时我拥有了彩色计算机,并且以很快的速度进行桌面排版工作。”英特尔486处理器首次采用内建的数学协处理器,将负载的数学运算功能从中央处理器中分离出来,从而显著加快了计算速度。
386和486推向市场后,均大获成功,英特尔在芯片领域的霸主地位日益凸现。此后,英特尔开始告别微处理器数字编号时代,进入到了Pentium时代。
1994年3月10日:Intel Pentium中央处理器芯片
1993年,英特尔发布了Pentium(俗称586)中央处理器芯片(CPU)。本来按照惯常的命名规律是80586,但是因为实际上「586」这样的数字不能注册成为商标使用,因此任何竞争对手都可以用586来扰乱消费市场。事实上在486发展末期,就已经有公司将486等级的产品标识成586来销售了。因此英特尔决定使用自创的品牌来作为新产品的商标—Pentium。
世界上第一款Pentium处理器
Pentium处理器内部结构
英特尔奔腾处理器采用了060微米工艺技术制造,核心由320万个晶体管组成。支持计算机更轻松的集成“现实世界”数据,如语音、声音、手写体和等。“奔腾”二字频繁出现在漫画和电视谈话节目中,使其在推出之后很快成为一个家喻户晓的词语。 奔腾是一个划时代的产品,并且影响了PC领域十年之久,目前该“名字”依然在沿用。
Intel Pentium处理器
Pentium是x86系列一大革新。其中晶体管数大幅提高、增强了浮点运算功能、并把十年未变的工作电压降至33V。Pentium刚推出的时候拥有浮点数除法不正确的错误(FDIV Bug),导致英特尔大量回收第一代产品(1994年十二月之前的产品),所以有FDIV Bug的微处理器所剩不多。Pentium 50Mhz也有这个FDIV错误,不过 A80501-50 只是业界样本,从来没有在市场上出现过。上图Intel Pentium 60Mhz就是整个Pentium系列第一款产品,也是含有 Bug FDIV的一款。这颗工程样品为目前世界上有在英特尔官方纪录里最早的Pentium CPU(Q0352),也是目前世界上已知仅存的一颗。
1995年3月27日,英特尔发布Pentium 120MHz处理器,采用了060 微米/035两种工艺技术,不过核心依旧由320万个晶体管组成。
1995年6月,英特尔发布Pentium 133MHz处理器,采用035工艺技术制造,核心提升到由330万个晶体管组成。
1995年11月1日,英特尔发布Pentium 150MHz、Pentium 166MHz、Pentium 180MHz、Pentium 200MHz四款处理器,并且采用了060 微米/035两种工艺技术,核心提升到由550万个晶体管组成。此时INTEL在以前设计基础上增加了L2 cache为256K和512K两种版本。
1996年1月4日,英特尔又发布Pentium 150MHz、Pentium 166MHz两款处理器,采用了035微米工艺技术,不过核心由330万个晶体管组成。
1996年6月10日,英特尔发布Pentium 200MHz处理器,采用了035微米工艺技术,不过核心还是由330万个晶体管组成。
1997年1月:Intel Pentium MMX中央处理器
1997年1月,Intel公司推出了Pentium MMX芯片,它在X86指令集的基础上加入了57条多媒体指令。这些指令专门用来处理视频、音频和图象数据,使CPU在多媒体 *** 作上具有更强大的处理能力,Pentium MMX还使用了许多新技术。单指令多数据流SIMD技术能够用一个指令并行处理多个数据,缩短了CPU在处理视频、音频、图形和动画时用于运算的时间;流水线从5级增加到6级,一级高速缓存扩充为16K,一个用于数据高速缓存,另一个用于指令高速缓存,因而速度大大加快;Pentium MMX还吸收了其他CPU的优秀处理技术,如分支预测技术和返回堆栈技术。
Pentium MMX中央处理器
Pentium MMX等于是Pentium的加强版中央处理器芯片(CPU),除了增加67个MMX(Multi-Media eXtension)指令以及64位数据型态之外之外,也将内建指令及数据暂存(Cache)从之前的8KB增加到16KB,内部工作电压降到28V。而英特尔之后的桌上型中央处理器皆包含了MMX指令。
1997年:Intel Pentium Overdrive
Intel Pentium Overdrive处理器
Intel Pentium OverDrive 中央处理器芯片(CPU),又是一项英特尔造福旧计算机使用者的升级选择。Pentium OverDrive 有两种,一种(不含MMX,5V)是给80486升级用的,另一种(含MMX,33V)是给Pentium早期产品(Socket6, 50-66Mhz)升级的。他们都有含散热器及风扇。
Intel Pentium MMX overdrive 200
1997-1998年:PentiumII处理器
1997年5月7日,英特尔发布Pentium II 233MHz、Pentium II 266MHz、Pentium II 300MHz三款PII处理器,采用了035微米工艺技术,核心提升到750万个晶体管组成。采用SLOT1架构,通过单边插接卡(SEC)与主板相连,SEC卡盒将CPU内核和二级高速缓存封装在一起,二级高速缓存的工作速度是处理器内核工作速度的一半;处理器采用了与Pentium PRO相同的动态执行技术,可以加速软件的执行;通过双重独立总线与系统总线相连,可进行多重数据交换,提高系统性能;PentiumII也包含MMX指令集。Intel此举希望用SLOT1构架的专利将AMD等一棍打死,可没想到Socket 7平台在以AMD的K6-2为首的处理器的支持下,走入了另一个春天。而从此开始,Intel也开始走上了一条前途不明的道路,开始频繁的强行制定自己的标准,企图借此达到迅速挤垮竞争对手的目的,但市场与用户的需要使得Intel开始不断的陷入被动和不利的局面。
Pentium II处理器
在这个时期100MHZ频率的SDR内存已经出现在市场上,但是Intel却惊人地宣布他们将放弃并行内存而主推一种名为Rambus的内存,而一时间众多大公司如西门子、HP和DELL等都投入了Rambus的门下,不过后来DDR内存的流行也证明了Intel的失败。
1997年6月2日,英特尔发布MMX 指令技术的Pentium II 233MHz处理器,采用了035微米工艺技术,核心由450万个晶体管组成。
1997年8月18日,英特尔发布L2 cache为1M的Pentium II 200MHz处理器,采用了035微米工艺技术,核心由550万个晶体管组成。
1998年1月26日,英特尔发布Pentium II 333MHz处理器,采用了035微米工艺技术,核心由750万个晶体管组成。
1998年4月15日,英特尔发布Pentium II 350MHz、Pentium II 400MHz和第一款Celeron 266MHz处理器,此三款CPU都采用了最新025微米工艺技术,核心由750万个晶体管组成。
1998年8月24日,英特尔发布Pentium II 450MHz处理器,采用了025微米工艺技术,核心由750万个晶体管组成。
CPU发展到这个时期,就不能不说说Intel Pentium II Cerelon处理器。英特尔将Celeron处理器的L2 Cache设定为只有Pentium II的一半(也就是128KB),这样既有合理的效能,又有相对低廉的售价(有A字尾的);这样的策略一直延续到今天。不过很快有人发现,使用双Celeron的系统与双Pentium II的系统差距不大,而价格却便宜很多,结果造成了Celeron冲击高阶市场的局面。后来英特尔决定取消Celeron处理器的SMP功能,才解决了这个问题。
Pentium II Celeron处理器
赛扬300A,是一个让多少人闻之动容的产品,又陪伴了多少曾经年少的读者度过悠长的学生时代。赛扬300A,从某种意义上已经是Intel的第二代赛扬处理器。第一代的赛扬处理器仅仅拥有266MHz、300MHz两种版本,第一代的Celeron处理器由于不拥有任何的二级缓存,虽然有效的降低了成本,但是性能也无法让人满意。为了弥补性能上的不足,Intel终于首次推出带有二级缓存的赛扬处理器——采用Mendocino核心的Celeron300A、333、366。经典,从此诞生。
Pentium II Celeron处理器
1999年:Intel Pentium III处理器
1999年2月26日,英特尔发布Pentium III 450MHz、Pentium III 500MHz处理器,同时采用了025微米工艺技术,核心由950万个晶体管组成,从此INTEL开始踏上了PIII旅程。
Intel Pentium III处理器
Pentium III是给桌上型计算机的中央处理器芯片(CPU),等于是 Pentium II的加强版,新增七十条新指令(SIMD,SSE)。Pentium III与Pentium II一样有 Mobile、Xeon以及Cerelon等不同的版本。Celeron系列与Pentium III最大的差距在于二级缓存,100MHz外频的Tualatin Celeron 1GHz可以轻松地跃上133MHz外频。更为重要的是,Tualatin Celeron还有很好的向下兼容性,甚至440BX主板在使用转接卡之后也有望采用该CPU,因此也成为很多升级用户的首选。
Intel Pentium III处理器
特别指出的是,Pentium III光是桌上型就拥有Katmai Slot 1 、Coppermine Slot 1以及Coppermine Socket 370等三种不同的系列。到后期,英特尔放弃插卡式界面而又回归到插槽界面(Socket 370)。socket370封装开始推出的时候,有一部分消费者舍弃了slot1平台而选择了新的处理器。新的PGA封装分为PPGA和FC-PGA两种,前者较为廉价,因而被赛扬处理器所采用,而更为昂贵的后者则被奔腾III处理器所采用。例外的是:采用Mendocino核心的赛扬处理器同时有这两种不同封装的版本。采用PPGA封装的赛扬处理器可以通过转接卡在slot1主板上使用,而采用FC-PGA封装的奔三处理器则无能为力了。
2000年:Intel Pentium 4处理器
Pentium 4相信大家都不陌生。这也是英特尔市场策略进入新纪元的开始。从P4开始,Intel已经不再每一两年就推出全新命名的中央处理器芯片(CPU),反而一再使用 Pentium 4这个名字,这个作法,导致 Pentium 4这个家族有一堆兄弟姊妹,而且这个P4家族延续了五年,这英特尔的市场策略是前所未见的。Penitum 4有分许多制程,Willamette 为P4最早的产品,其中还包括 Socket 423这个跟之后都不兼容的封装(因为接脚数不同嘛),不过正是因为不能升级而且只能使用Rambus这个怪物内存规格,所以此款销售并不怎么好。
Socket423针脚的P4处理器
Socket423是与slot1接口同样短命的一个产物,它从2000年10月推出到2001年8月仅仅使用了不到一年。多数用户最后都升级到了更成熟的socket478平台,而很多购买了socket423处理器的用户的投资都打了水漂。采用socket423接口的CPU只有一款,即Willamette核心的奔腾四处理器。最终这款处理器在市场上的销售情况远低于预期,但在同期Intel的市场份额还有所增长,奔腾四和Netburst的发布给了人们很大的鼓舞,直到今天Intel的38GHZ主频的处理器采用的还是这种架构。在新的处理器中还应用了一系列的新技术例如支持快速视频流编码的SSE2指令集等。
478针脚的P4处理器
随着处理器主频和内部集成晶体管数目的增加,处理器消耗的能量也开始大大增加。为了满足处理器所需要的巨大电能,因为奔腾四处理器的功率达到了72W,因此它需要在主板上附设额外的电源接口来满足处理器的供电需要,而由于发热量的增加,一个散热风扇也成了一个必需品。Intel主推的与奔腾四搭配的平台是850平台,双通道的Rambus内存达到了前所未有的25GB/S的内存数据带宽,但是由于Rambus内存价格昂贵所以使得早期P4平台相当昂贵。而由于契约的限制Intel又无法使用当时已经出现在市场上的DDR内存。
尽管新的奔四处理器相当成熟,但是在市场上的销量仍然不尽如人意,主要原因就是昂贵的RDRAM内存。虽然后来Intel推出了845解决方案使得用户可以使用SDR内存,但是SDR内存的数据传输速率显然不能够让人满意。当时市场上已经出现了DDR内存,但由于协议问题Intel不能使用这种廉价的解决方案。
经过了消费者漫长的等待Intel终于和Rambus达成了协议,之后Intel马上推出了845D和845GD两种基于DDR内存平台的芯片组。虽然DDR相对SDR数据带宽增加了一倍,但是相对于Rambus还是有所不足,知道双通道DDR内存的出现才解决了这一问题。
2002-2004年:超线程P4处理器
2002年11月14日,英特尔在全新英特尔奔腾4处理器306 GHz上推出其创新超线程(HT)技术。超线程(HT)技术支持全新级别的高性能台式机,同时快速运行多个计算应用,或为采用多线程的单独软件程序提供更多性能。超线程(HT)技术可将电脑性能提升达 25%。除了为台式机用户引入超线程(HT)技术外,英特尔在推出英特尔奔腾4处理器306GHZ时达到了一个电脑里程碑。这是第一款商用微处理器,运行速率为每秒30亿周期,并且采用当时业界最先进的013 微米制程制作。
奔腾4处理器306GHz
英特尔发布前端总线为533MHz的Pentium 4 306 GHz处理器,采用了013微米工艺技术,提供L2 cache为512K的二级缓存,核心由5500万个晶体管组成。时隔一年,英特尔发布了支持超线程(HT)技术的P4处理器至尊版320 GHz。基于这一全新处理器的高性能电脑专为高端游戏玩家和计算爱好者而设计,现已由全球的系统制造商全面推出。英特尔奔腾4处理器至尊版采用英特尔的013微米制程构建而成,具备512 KB二级高速缓存、2MB三级高速缓存和800MHz系统总线速度。
P4处理器至尊版320GHz
该处理器可兼容现有的英特尔865和英特尔875芯片组家族产品以及标准系统内存。2MB三级高速缓存可以预先加载图形帧缓冲区或视频帧,以满足处理器随后的要求,使在访问内存和I/O设备时实现更高的吞吐率和更快的帧带率。最终,这可带来更逼真的游戏效果和改进的视频编辑性能。增强的 CPU 性能还可支持软件厂商创建完善的软件物理引擎,从而带来栩栩如生的人物动作和人工智能,使电脑控制的人物更加形象、逼真。
半年之后,2004年6月,英特尔发布了P4 34GHz处理器,该处理器支持超线程(HT)技术,采用013 微米制程,具备 512 KB二级高速缓存、2 MB 三级高速缓存和800MHz 系统前端总线速度。
Northwood是第二代产品,采用013微米制程,具有电压低、体积小、温度低的优点。接着就是Prescott(009微米),虽然这技术很新,不过由于效能提升并不明显,而且有过热的问题。后来英特尔又推出Hyper Threading技术,大大增加工作效率,让P4又成为市场宠儿。英特尔之后又推出Extreme Edition、含有Prestonia(原本给服务器用的Xeon核心)以及Gallatin(013微米Northwood外频提升改良版)核心的CPU。现在市场上的高阶Pentium 4则是 Socket LGA 775的 Prescott为主。
2005-2006年:双核处理器
2005年4月,英特尔的第一款双核处理器平台包括采用英特尔955X高速芯片组、主频为 32 GHz 的英特尔奔腾处理器至尊版840,此款产品的问世标志着一个新时代来临了。双核和多核处理器设计用于在一枚处理器中集成两个或多个完整执行内核,以支持同时管理多项活动。英特尔超线程(HT)技术能够使一个执行内核发挥两枚逻辑处理器的作用,因此与该技术结合使用时,英特尔奔腾处理器至尊版840能够充分利用以前可能被闲置的资源,同时处理四个软件线程。
英特尔奔腾D处理器
5月,带有两个处理内核的英特尔奔腾D处理器随英特尔945高速芯片组家族一同推出,可带来某些消费电子产品的特性,例如:环绕立体声音频、高清晰度视频和增强图形功能。2006年1月,英特尔发布了Pentium D 9xx系列处理器,包括了支持VT虚拟化技术的Pentium D 960(360GHz)、950(340GHz)和不支持VT的Pentium D 945(34 GHz)、925(3 GHz)(注:925不支持VT虚拟化技术)和915(280 GHz)。
英特尔酷睿2双核处理器
因为百度回复问题限制10000字,更详细的资料和相关请到这里查看:>呵呵这个我们刚讲的。老师的课件,帮你COPY过来希望有用。
有过是从旧到新的,你自己看吧!
1971年,Intel公司推出了世界上第一块8位微处理器4004;
1973年,推出了8位CPU 8080,在电子领域中应用;
1976年,8位,8085;
1978年,16位,8086,IBM公司应用到PC上,主频小于1MB;
1982年,16位,80286,1~2Mbips(百万条指令/秒);
1985年,32位,80386,6~12Mbips;
1989年,32位,80486,20~40Mbips;(转折点)
a、协处理器——增加浮点运算(增加带宽);
b、Cacke(高速缓存)协调内存与CPU速度差异(一级缓存);
c、Risc(精简指令集)一条指令在一个周期内完成;
d、倍频(指令系数)
e、主板与CPU分开
1993年,Pentium奔腾,32位,集成了310万个晶体管;
1994年,Pentium Pro(高能奔腾),首次集成了256K L2缓存;
1997年, Pentium II,首次采用SLOT1(插卡式);
1997年, Pentium MMX(多能奔腾),集成了多媒体指令集MMX,该指令集成了57条多媒体指令,用来处理音频、视频方面的数据;
1998年,Celeron,面向低端市场;
1999年, Pentium III,Socket 370,增加了70条SSE扩展指令集,用于提高3D处理能力和影像效果;
2000年, Pentium 4(早期), Socket 423接口;
2001年, Pentium 4(现代),Socket 478接口;
2001年英特尔发布了Itanium(安腾)处理器。Itanium处理器是英特尔第一款64位元的产品,这是为顶级、企业级服务器及工作站设计的;
Pentium 4 HT(超线程),超线程(HT)技术使软件能够将一个处理器“视为”两个处理器。软件应用可被写成具有多个代码段(称为“线程”),以充分利用这项技术。
Pentium D系列,在以多核心为中心的IDF大会上,Intel官方正式将Smithfield双核心处理器命名为Pentium D。
现在的就不说了自己看吧!CPU也称为微处理器,微处理器的历史可追溯到1971年,当时INTEL公司推出了世界上第一台微处理器4004。它是用于计算器的4位微处理器,含有2300个晶体管。从此以后,INTEL便与微处理器结下了不解之缘。下面以INTEL公司的80X86系列为例介绍一下微处理器的发展历程。
1978和1979年,INTEL公司先后推出了8086和8088芯片,它们都是16位微处理器,内含29000个晶体管,时钟频率为477MHz,地址总线为20位,可使用1MB内存。它们的内部数据总线都是16位,外部数据总线8088是8位,8086是16位。1981年8088芯片首次用于IBMPC机中,开创了全新的微机时代。最早的i8086/8088是采用双列直插(DIP)形式封装,从i80286开始采用方形BGA扁平封装(焊接),从i80386开始到Pentiumpro开始采用方形PGA(插脚),1982年,INTEL推出了80286芯片,该芯片含有134万个晶体管,时钟频率由最初的6MHz逐步提高到20MHz。其内部和外部数据总线皆为16位,地址总线24位,可寻址16MB内存。80286有两种工作方式:实模式和保护模式。
1985年INTEL推出了80386芯片,它是80X86系列中的第一种32位微处理器,内含275万个晶体管,时钟频率为125MHz,后提高到20MHz,25MHz,33MHz。其内部和外部数据总线都是32位,地址总线也是32位,可寻址4GB内存。它除具有实模式和保护模式外,还增加了一种叫虚拟86的工作方式,可以通过同时模拟多个8086处理器来提供多任务能力。
除了标准的80386芯片(称为80386DX)外,出于不同的市场和应用考虑,INTEL又陆续推出了一些其它类型的80386芯片:80386SX、80386SL、80386DL等。
1988年推出的80386SX是市场定位在80286和80386DX之间的一种芯片,其与80386DX的不同在于外部数据总线和地址总线皆与80286相同,分别是16位和24位(即寻址能力为16MB)。
1990年推出的80386SL和80386DL都是低功耗、节能型芯片,主要用于便携机和节能型台式机。80386SL与80386DL的不同在于前者是基于80386SX的,后者是基于80386DX的,但两者皆增加了一种新的工作方式:系统管理方式(SMM)。当进入系统管理方式后,CPU就自动降低运行速度、控制显示屏和硬盘等其它部件暂停工作,甚至停止运行,进入"休眠"状态,以达到节能目的。
1989年INTEL推出了80486芯片,这种芯片实破了100万个晶体管的的界限,集成了120万个晶体管。其时钟频率从25MHz逐步提高到33MHz、50MHz。80486是将80386和数学协处理器80387以及一个8KB的高速缓存集成在一个芯片内,并且在80X86系列中首次采用了RISC技术,可以在一个时钟周期内执行一条指令。它还采用了突发总线方式,大大提高了与内存的数据交换速度。由于这些改进,80486的性能比带有80387数学协处理器的80386DX提高了4倍。
80486和80386一样,也陆续出现了几种类型。上面介绍的最初类型是80486DX。1990年推出了80486SX,它是486类型中的一种低价格机型,其与80486DX的区别在于它没有数学协处理器。
80486DX2由系用了时钟倍频技术,其芯片内部的运行速度是外部总线运行速度的两倍,即芯片内部以2倍于系统时钟的速度运行,但仍以原有时钟速度与外界通讯。80486DX2的内部时钟频率主要有40MHz、50MHz、66MHz等。80486DX4也是采用了时钟倍频技术的芯片,它允许其内部单元以2倍或3倍于外部总线的速度运行。为了支持这种提高了的内部工作频率,它的片内高速缓存扩大到16KB。80486DX4的时钟频率为100MHz,其运行速度比66MHz的80486DX2快40%。
80486也有SL增强类型,其具有系统管理方式,用于便携机或节能型台式机。INTEL公司于1993年又推出了80586,其正式名称为PENTIUM。PENTIUM含有310万个晶体管,时钟频率最初为60MHZ和66MHZ,后提高到200MHZ。66MHZ的PENTIUM微处理器的性能比33MHZ的80486DX提高了3倍多,而100MHZ的PENTIUM则比33MHZ的80486DX快6至8倍。
PENTIUM引起的轰动尚未结束,INTEL公司又推出了新一代微处理器--P6。P6含有550万个晶体管,时钟频率为133MHZ,处理速度几乎是100MHZ的PENTIUM的2倍。P6的一级(片内)缓存为8KB指令和8KB数据。值得注意的是在P6的一个封装中除P6芯片外还包括有一个256KB的二级缓存芯片,两个芯片之间用高频宽的内部通讯总线互连。P6最引人注目的是具有一项称为"动态执行"的创新技术,这是继PENTIUM在超标量体系结构上实现实破之后的又一次飞跃。
1997年,在奔腾(P54C)和P6的基础上又有了新的发展,一块奔腾(P54C),加上57条多媒体指令,就得到了多能奔腾(P55C),相对P54C,P55C在以下几方面做了改进:(1)支持称为MMX多媒体扩展的新指令集,有57条新指令,用于高效地处理图形、视频、音频数据;(2)内部Cache从16KB增加到32KB。(3)优化了CPU的执行核心。
为了弥补P6芯片的某些缺陷,Intel在P6基础上开发了两个变体:Klamath(即PentiumⅡ)和Deschutes来补充完善它。PentiumⅡ使用MMX和AGP技术,其系统总线速度达到66MHz,一级Cache含16KB指令Cache和16KB数据Cache,二级Cache为512KB,采用了035微米的工艺,CPU工作电压为28V;而Deschueses(PII350以上的CPU)是PentiumⅡ的一个025微米版本,具有更低的电源电压,外频为100MHz。PentiumII改变了以往的PGA陶瓷封装,而把处理器芯片、L2高速缓存以及TAGPAM(用来管理L2高速缓存)集成在一块电路板上,然后封装在新的SEC(SingleEdgeContact,单边接触盒)内。由于采用了新的SEC封装,PentiumII必须插在242线的SLOT1插槽内,也就是说,PentiumII不兼容Socket7结构。
1998年7月,Intel推出了用于服务器和工作站的PentiumII至强器(PentiumIIXeon),它采用新的P6微处理器结构,025微米制造,最低主频400MHz,内部带有512K或1M二级高速缓存。PentiumII至强使用的是330线的SLOT2插槽,使L2高速缓存与CPU主频同步运行,系统性能有很大的提高,当然,体积也比SLOT1的PentiumII稍大。
PentiumII赛扬是Intel在1998年4月针对低端市场发布的PentiumII级处理器,它采用了PII的内核,去掉了PII处理器上的二级缓存,从而降低了成本,但同时也使其整数性能税减。Inter公司也意识到了这一点,在随后推出的300MHz和333MHz的赛扬中集成了128K二级高速缓存,虽然比PentiumII的512K少,但由于赛扬的128K二级缓存是与CPU同频运行的,所以性能几乎和同主频PentiumII持平,有时甚至比PentiumII还要好。而其价格,只不过是同频PentiumII的二分之一,非常超值。
1999年1月5日,Intel推出了Socket370赛扬,它仍然使用了Slot1架构的赛扬内核,只不个过采用了新的PPGA封装,降低了生产成本。Socket370的赛扬处理器在外形上很像PentiumMMX,但它的针脚比PentiumMMX的要多一圈,为370针,而PentiumMMX只有321针。所以老的Socket7的用户如要使用Socket370的赛扬,,必须购买一块Socket370插座的主板,而使用Slot1插座主板的用户,则可以选择一块转换卡,就可以使用新的Socket370的赛扬了。
1999年2月26日,Intel正式发布了PentiumIII处理器,打响了1999年CPU大战的第一q。PentiumIII的内核和PentiumII大致一样,只有新增加了70条SSE(StreamingSIMDExtensions,单指令对数据流扩展)指令集,使CPU的浮点运算能力得到增强,提高了CPU对浮点运算密集型应用程序的执行效率。另外,就是关于PentiumIII的序列号。由于Intel在每一颗PentiumIII的硅片上都植入了一个固定的序列号,那么在因特网上,就可以通过PentiumIII的序列号识别出电脑的用户。这样做,是为了提高电子商务的安全性,但同时更多的人担心自己的隐私暴露在网上。要解决这个问题,可以使用Intel的序列号控制软件关闭序列号,也可以在BIOS中直接将序列号关掉。
目前的PentiumIII主频为450MH和500MHz,025微米工艺制造,32K一级高速缓存,512K二级高速缓存同样以CPU主频的一半运行,核心电压20V,仍然使用Slot1插槽。需要注意的是,目前支持SSE指令集的软件还很少,不能体现出SSE指令的优势,随着各大软件厂商对SSE指令的支持,PentiumIII的性能将会有更大的提高。
PentiumIII推出不久,Intel推出了PentiumIII至强处理器,频率有500MHz和550MHz两种,核心电压20V,使用Slot2插槽,L2级Cache内置于片内,有1M、2M或2M以上的版本。在微处理器的市场中,虽然Intel公司以其绝对的规模,生产能力和杰出的工作设计成为业界领袖,但它的产品还是有隙可乘的,许多具有实力的公司正挤身微处理器这一市场,向Intel发出了强有力的挑战,AMD的K6-2、K6-III处理器,还有K7处理器,它们在某些方面的性能完全可以和PentiumⅡ、PentiumIII相媲美,使微处理器市场形成了一种错踪复杂的状态。
微处理器的出现是一次伟大的工业革命,从1971年到1999年,在短短四分之一世纪内,微处理器的发展日新月异,令人难以置信。目前的PENTIUM比1981年用于第一台PC机的8088要快300倍以上。可以说,人类的其它发明都没有微处理器发展得那么神速、影响那么深远。
★
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)