然而,当下越来越多的安全漏洞、数据泄露等问题的爆发,安全正成为系统选型不得不考虑的问题,Kafka由于其安全机制的匮乏,也导致其在数据敏感行业的部署存在严重的安全隐患。本文将围绕Kafka,先介绍其整体架构和关键概念,再深入分析其架构之中存在的安全问题,最后分享下Transwarp在Kafka安全性上所做的工作及其使用方法。
Kafka架构与安全
首先,我们来了解下有关Kafka的几个基本概念:
Topic:Kafka把接收的消息按种类划分,每个种类都称之为Topic,由唯一的Topic Name标识。
Producer:向Topic发布消息的进程称为Producer。
Consumer:从Topic订阅消息的进程称为Consumer。
Broker:Kafka集群包含一个或多个服务器,这种服务器被称为Broker。
Kafka的整体架构如下图所示,典型的Kafka集群包含一组发布消息的Producer,一组管理Topic的Broker,和一组订阅消息的Consumer。Topic可以有多个分区,每个分区只存储于一个Broker。Producer可以按照一定的策略将消息划分给指定的分区,如简单的轮询各个分区或者按照特定字段的Hash值指定分区。Broker需要通过ZooKeeper记录集群的所有Broker、选举分区的Leader,记录Consumer的消费消息的偏移量,以及在Consumer Group发生变化时进行relalance Broker接收和发送消息是被动的:由Producer主动发送消息,Consumer主动拉取消息。
然而,分析Kafka框架,我们会发现以下严重的安全问题:
1网络中的任何一台主机,都可以通过启动Broker进程而加入Kafka集群,能够接收Producer的消息,能够篡改消息并发送给Consumer。
2网络中的任何一台主机,都可以启动恶意的Producer/Consumer连接到Broker,发送非法消息或拉取隐私消息数据。
3Broker不支持连接到启用Kerberos认证的ZooKeeper集群,没有对存放在ZooKeeper上的数据设置权限。任意用户都能够直接访问ZooKeeper集群,对这些数据进行修改或删除。
4Kafka中的Topic不支持设置访问控制列表,任意连接到Kafka集群的Consumer(或Producer)都能对任意Topic读取(或发送)消息。
随着Kafka应用场景越来越广泛,特别是一些数据隐私程度较高的领域(如道路交通的视频监控),上述安全问题的存在犹如一颗定时炸d,一旦内网被黑客入侵或者内部出现恶意用户,所有的隐私数据(如车辆出行记录)都能够轻易地被窃取,而无需攻破Broker所在的服务器。
Kafka安全设计
基于上述分析,Transwarp从以下两个方面增强Kafka的安全性:
身份认证(Authentication):设计并实现了基于Kerberos和基于IP的两种身份认证机制。前者为强身份认证,相比于后者具有更好的安全性,后者适用于IP地址可信的网络环境,相比于前者部署更为简便。
权限控制(Authorization):设计并实现了Topic级别的权限模型。Topic的权限分为READ(从Topic拉取数据)、WRITE(向Topic中生产数据)、CREATE(创建Topic)和DELETE(删除Topic)。
基于Kerberos的身份机制如下图所示:
Broker启动时,需要使用配置文件中的身份和密钥文件向KDC(Kerberos服务器)认证,认证通过则加入Kafka集群,否则报错退出。
Producer(或Consumer)启动后需要经过如下步骤与Broker建立安全的Socket连接:
1Producer向KDC认证身份,通过则得到TGT(票证请求票证),否则报错退出
2Producer使用TGT向KDC请求Kafka服务,KDC验证TGT并向Producer返回SessionKey(会话密钥)和ServiceTicket(服务票证)
3Producer使用SessionKey和ServiceTicket与Broker建立连接,Broker使用自身的密钥解密ServiceTicket,获得与Producer通信的SessionKey,然后使用SessionKey验证Producer的身份,通过则建立连接,否则拒绝连接。
ZooKeeper需要启用Kerberos认证模式,保证Broker或Consumer与其的连接是安全的。
Topic的访问控制列表(ACL)存储于ZooKeeper中,存储节点的路径为/acl/<topic>/<user>,节点数据为R(ead)、W(rite)、C(reate)、D(elete)权限的集合,如/acl/transaction/jack节点的数据为RW,则表示用户jack能够对transaction这个topic进行读和写。
另外,kafka为特权用户,只有kafka用户能够赋予/取消权限。因此,ACL相关的ZooKeeper节点权限为kafka具有所有权限,其他用户不具有任何权限。
构建安全的Kafka服务
首先,我们为Broker启用Kerberos认证模式,配置文件为/etc/kafka/conf/serverproperties,安全相关的参数如下所示:
其中,authentication参数表示认证模式,可选配置项为simple, kerberos和ipaddress,默认为simple。当认证模式为kerberos时,需要额外配置账户属性principal和对应的密钥文件路径keytab
认证模式为ipaddress时,Producer和Consumer创建时不需要做任何改变。而认证模式为kerberos时,需要预先创建好相应的principal和keytab,并使用API进行登录,样例代码如下所示:
public class SecureProducer extends Thread {
private final kafkajavaapiproducerProducer<Integer, String> producer;
private final String topic;
private final Properties props = new Properties();
public SecureProducer(String topic) {
AuthenticationManagersetAuthMethod(“kerberos”);
AuthenticationManagerlogin(“producer1″, “/etc/producer1keytab”);
propsput(“serializerclass”, “kafkaserializerStringEncoder”);
propsput(“metadatabrokerlist”,
“172161190:9092,172161192:9092,172161193:9092″);
// Use random partitioner Don’t need the key type Just set it to Integer
// The message is of type String
producer = new kafkajavaapiproducerProducer<Integer, String>(
new ProducerConfig(props));
thistopic = topic;
}
Topic权限管理
Topic的权限管理主要是通过AuthorizationManager这个类来完成的,其类结构如下图所示:
其中,resetPermission(user, Permissions, topic) 为重置user对topic的权限。
grant(user, Permissions, topic) 为赋予user对topic权限。
revoke(user, Permissions, topic) 为取消user对topic权限。
isPermitted(user, Permissions, topic) 为检查user对topic是否具有指定权限。
调用grant或revoke进行权限设置完成后,需要commit命令提交修改到ZooKeeper
Kerberos模式下,AuthorizationManager需要先使用AuthenticationManagerlogin方法登录,与ZooKeeper建立安全的连接,再进行权限设置。示例代码如下所示:
public class AuthzTest {
public static void main(String[] args) {
Properties props = new Properties();
propssetProperty(“authentication”, “kerberos”);
propssetProperty(“zookeeperconnect”, “172162116:2181,172162117:2181,172162118:2181″);
propssetProperty(“principal”, “kafka/host1@TDH”);
propssetProperty(“keytab”, “/usr/lib/kafka/config/kafkakeytab”);
ZKConfig config = new ZKConfig(props);
AuthenticationManagersetAuthMethod(configauthentication());
AuthenticationManagerlogin(configprincipal(), configkeytab());
AuthorizationManager authzManager = new AuthorizationManager(config);
// reset permission READ and WRITE to ip 17216187 on topic test
authzManagerresetPermission(“17216187″,
new Permissions(PermissionsREAD, PermissionsWRITE), “test”);
// grant permission WRITE to ip 17216187 on topic test
authzManagergrant(“17216187″, new Permissions(PermissionsCREATE), “test”);
// revoke permission READ from ip 17216187 on topic test
authzManagerrevoke(“17216187″, new Permissions(PermissionsREAD), “test”);
// commit the permission settings
authzManagercommit();
authzManagerclose();
}
}
ipaddress认证模式下,取消和赋予权限的 *** 作如下所示:
public class AuthzTest {
public static void main(String[] args) {
Properties props = new Properties();
propssetProperty(“authentication”, “ipaddress”);
propssetProperty(“zookeeperconnect”,
“17216187:2181,17216188:2181,17216189:2181″);
ZKConfig config = new ZKConfig(props);
// new authorization manager
AuthorizationManager authzManager = new AuthorizationManager(config);
// reset permission READ and WRITE to ip 17216187 on topic test
authzManagerresetPermission(“17216187″,
new Permissions(PermissionsREAD, PermissionsWRITE), “test”);
// grant permission WRITE to ip 17216187 on topic test
authzManagergrant(“17216187″, new Permissions(PermissionsCREATE), “test”);
// revoke permission READ from ip 17216187 on topic test
authzManagerrevoke(“17216187″, new Permissions(PermissionsREAD), “test”);
// commit the permission settings
authzManagercommit();
authzManagerclose();
}
}
总结与展望
本文通过介绍Kafka现有架构,深入挖掘其中存在的安全问题,并给出Transwarp在Kafka安全上所做的工作及其使用方式。然而,纵观Hadoop & Spark生态系统,安全功能还存在很多问题,各组件的权限系统独立混乱,缺少集中易用的账户管理系统。某些组件的权限管理还很不成熟,如Spark的调度器缺少用户的概念,不能限制具体用户使用资源的多少。Transwarp基于开源版本,在安全方面已有相当多的积累,并持续改进开发,致力于为企业用户提供一个易用、高效、安全和稳定的基础数据平台。 首先,明白spark streaming的作用: 可扩展,高吞吐量,容错,exactly once的批数据处理软件, 和Elasticsearch不同,Elasticsearch是分布式搜索引擎,支持全文索引,值得一提的是ELK技术栈中的K并不是kafka,而是Kibana,是web界面(和 portainer 性质一样)。
所以之前链接kafka的作用是为kafka做ETL工作,之后将数据返回kafka。做为消息中间件,kafka的作用是于高并发环境下,由于来不及同步处理,请求往往会发生堵塞,比如说,大量的insert,update之类的请求同时到达Mysql,直接导致无数的行锁表锁,甚至最后请求会堆积过多,从而触发too many connections错误。通过使用消息队列,我们可以异步处理请求,从而缓解系统的压力。
以下是kafka的作用------------------------------------------------------------------------------------------------------------------------------------------------------
kafka是一个发布订阅消息系统,由topic区分消息种类,每个topic中可以有多个partition,每个kafka集群有一个多个broker服务器组成,producer可以发布消息到kafka中,consumer可以消费kafka中的数据。kafka就是生产者和消费者中间的一个暂存区,可以保存一段时间的数据保证使用。
优点:
通过sequence的磁盘数据结构提供消息的持久化,这种结构对于即使数以TB的消息存储也能够保持长时间的稳定性能。
高吞吐量 :即使是非常普通的硬件Kafka也可以支持每秒数百万的消息。
支持通过Kafka服务器和消费机集群来分区消息。
支持Hadoop并行数据加载。
kafka的集群管理,负载均衡由zk实现。
kafka的应用场景:
日志收集:一个公司的各种应用都可以作为生产者将日志吐到kafka,再由hbase,solr,es等来消费kafka的日志作统计,查错。
消息系统:解耦和生产者和消费者、缓存消息等。
用户活动跟踪:Kafka经常被用来记录web用户或者app用户的各种活动,如浏览网页、搜索、点击等活动,这些活动信息被各个服务器发布到kafka的topic中,然后订阅者通过订阅这些topic来做实时的监控分析,或者装载到hadoop、数据仓库中做离线分析和挖掘。
运营指标:Kafka也经常用来记录运营监控数据。包括收集各种分布式应用的数据,生产各种 *** 作的集中反馈,比如报警和报告。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)