中继是指要求服务器向其他服务器传递邮件的一种请求,一个正常的邮件转发过程中,邮件是一站到达的,也就是说一个服务器处理的邮件只有两类,一类是外发的邮件,一类是接收的邮件,前者是本域用户通过服务器要向外部转发的邮件,后者是发给本域用户的,一个服务器不应该处理过路的邮件,就是既不是你的用户发送的,也不是发给你的用户的,而是一个外部用户发给另一个外部用户的。这一行为称为第三方中继。如果是不需要经过验证就可以中继邮件组织外,称为OPEN RELAY(开放中继),这两者是要禁止的,但中继是不能关闭的,这里需要了解几个概念。
1中继
用户通过服务器将邮件传递到组织外。
2open relay
不受限制的组织外中继,即无验证的用户也可提交中继请求。
3第三方中继
由服务器提交的OPEN RELAY,不是从客户端直接提交的,比如我的域是A,我通过服务器B中转邮件到D域,这时在服务器B上看到的是连接请求来源A域的服务器,而邮件既不是服务器B所在域用户提交的,也不是发C域的,这就是属于第三方中继,这是垃圾邮件的根本,如果用户通过直接连接你的服务器发送邮件,这是无法阻止的,比如群发软件,但如果关闭了open relay,那么他只能发信到你的组织内用户,无法将邮件中继出组织。眼下,中国共计装有近2亿个视频监控摄像头,而具备AI能力的摄像头仅占其中的1%。
在高清监控摄像头数量与AI渗透率不断递增的情况下,由摄像头采集的图像、视频流数据,需要更强大的分析引擎对其进行分析、处理和训练。
以北京地铁站为例,北京1000多个地铁站中平均每站都有上百个摄像头,平均每个地铁站每天流通8到10万人较为常见。保守预估每个相机每天看见1万个人,再假设对比库中有1万个目标(对于公安数据库来说并不大),这个相机每天要回答的问题就是一亿零一万个!
显然,在当前各类安防项目中,依靠纯嵌入式智能DVR和NVR均无法满足严苛的计算要求。
面对万亿级AI安防市场,在技术落地成花的十字路口,所有的安防企业高管们都会面对一个终极命题:AI安防究竟需要一款怎样强大的服务器?
谈到安防服务器,X86无处不在,一直以来,它都是包括安防在内等多个行业的“宠儿”。
“眼下安防市场很多的管理平台,譬如流媒体服务器、转发服务器、主控服务器基本基于X86架构建设,它的最大优势是比较容易开发、上手比较快,大多工程师更擅长在X86架构上做研发。”
华泰科捷CEO傅剑辉告诉雷锋网,考虑到它表现不俗的性价比,X86服务器一直都是我们采购的首选。
由此,过去多年来,X86服务器也获得了全球顶尖服务器供货商的青睐。
遗憾的是,各科成绩均“达标”的 X86服务器,在如今大热的AI浪潮面前,却遇到了一些“偏科”难题。
傅剑辉透露,从安防用户实际使用角度考量,目前X86服务器应用在安防行业主要存在三大问题:
一、CPU负责逻辑运算的单元并不多,在多任务处理时效率低下。面对海量视频信息,传统X86服务器单纯以CPU为核心的数据中心部署已经不能很好地满足并行灵活计算、多变环境的计算需求,很难在安防企业级服务器市场有惊艳的表现。
“以前的视频数据只需存在后台,做少量分析即可,也就是说存储足够大就行;今天,很多客户都希望我们能够实时处理这些海量视频信息并反馈结果,而这就意味着系统需要同时做解码、做视频结构化、做识别、搜索等等,X86明显就不够用了。”
换句话说,X86可以类比手机里的功能机,它能够满足单一的通信处理需求,而AI融入的安防市场,更需要一台强大的智能手机,配备更强大的性能以适配 游戏 、处理等个性需求。
二、在行业出现算力不够的大背景下,很多厂商打出X86服务器加上若干GPU卡的组合拳,而这种为了单纯解决算力而“拼凑”出的方案大大增加了服务器的功耗和用户成本。
从行业采用情况看,如果涉及人脸识别等AI项目时,大部分厂商会采用GPU作为人像数据结构化的处理单元,特别是在X86服务器集群中,GPU更是成为唯一选择。
在某种程度上,GPU的确解决了部分算力不足的问题,却也存在两个致命硬伤。
一是功耗大,需依托X86架构服务器运行,不适用于更为广泛的AI方案开发; 二是成本高昂,比如采用GPU方案,折算单路人脸识别成本在万元以上,相较其他千元级,甚至是百元级的方案,毫无成本优势可言,这两个致命短板,也让很多企业不得不寻求新的方案。
三、由于X86更多采用的是较为开放的LinuX系统,而非封闭的AIX系统,在稳定性和可维护性上略显不足。
“未来的市场必定是数据规模和计算能力的角逐。”
浪潮商用机器有限公司产品部张琪告诉雷锋网,随着越来越多新应用的出现,传统的X86计算架构会遇到很多瓶颈,包括数据瓶颈(处理器的计算单元以多快的速度获取和交换数据)、计算瓶颈(单位空间内能集成多少计算能力)、延迟瓶颈、通信瓶颈。
就像设计时速30码的道路难以承载均速100码的车辆通行一样,很短时间内就可造成道路拥堵甚至瘫痪。
今天来看,面对大计算、智能化场景,谁能够最先解决算力问题,又能够更好降低功耗与成本,谁就能在AI浪潮下引领鳌头。
在张琪看来,基于POWER9的高性能服务器能够很好满足AI安防时代下的高智能需求。
从AI安防实际场景所需出发,浪潮商用机器有限公司近期推出了基于POWER9服务器,搭载UltraVision视频智能分析系统的AI视觉分析智能分析解决方案(UltraVision on Power)。
AI视觉分析解决方案可以看作一个超级高效的AI大脑,它软硬结合,能够实时、准确、智能、节能地完成包括安防在内各个行业所需的复杂性数据处理工作。
“硬”,体现在POWER9架构上,它能够提供强大的图像视频的计算处理能力。相比其他处理器,POWER9支持了PCIe40、NVlink20等新一代I/O协议,能够在AI等应用中展示出更好的应用表现。
具体来看,相比X86,其单节点视频处理路数提升近3倍,达38倍提升深度学习框架AI模型训练效率,18倍更好的加速数据库性能,IO能力提升了近5倍。
另外,执行视频和图像编解码,查询搜索任务时,整机可提供单精度56TFlops和双精度28TFlops超强算力,和比X86服务器相比,单块GPU即可提供比纯CPU服务器高30倍的推理能力。
值得一提的是,该方案独有的CAPI技术,可以将延迟降低至1/36,全面加速图像处理,同时功耗降低高达30%。
18倍、38倍、3倍、5倍、30倍,看起来不大的几个数字对于安防行业来说,都是庞大数量级的提升。
这几个数字的变化,能够将各类犯罪和严重的暴力事件的防控手段从事后介入提前到事前或事中,大大减少安全事件的发生,实现公共安全从被动防御到主动防御的业务转变。
除了POWER9提供的超强算力硬核外,在软件层面,该方案还有高重UltraVision视频智能分析技术加持,如目标检测(PD)、行人重识别(RE-ID)等多项计算机视觉技术,提升目标识别准确率高达94%。
毋庸置疑,软硬结合的AI视觉分析解决方案在实际落地过程中,能够实实在在地为用户解决AI时代下的高算力与低功耗问题。
除此之外,相比其他热门方案,该方案还有两大优势不得不提。
其一、独有的利旧能力降低客户成本。
通常来说,一般的AI视频系统想要实现某些功能必须接入具备AI技术的感知摄像头,该方案在部署过程中不需要更换原有摄像头,只需要旁路接入视频采集端,即可实现AI系统;
另外,该方案还可以兼容不同品牌、不同制式的任何摄像头;可以不改变客户原服务器等硬件架构的情况下直接部署,有效降低客户部署成本。
其二、就浪潮商用机器公司本身来说,依托其在服务器领域的引领地位,拥有强大的定制化落地能力,缩短交付周期从月到天。
该方案无论是面对大数据处理、机器学习这样的AI应用,还是软件定义存储、内存数据库这一类的开源应用都会有比较好的性能表现。
毫无疑问,专为AI、云计算、大数据等新兴应用而生的AI视觉分析解决方案在客户面对严苛业务挑战时,提供了更多元化的选择。
依托这款高性能产品,用户可以更快地部署各类智能应用,缩短安防AI应用的技术迭代周期。
与此同时,性能卓越的浪潮商用机器服务器的应用不仅限于安防行业,在互联网、金融等对安全性要求高的领域,其也可以施展拳脚。
安防之外,整个 社会 正在向规模化、自动化、智能化转型升级。其中,智能化的应用方向涵盖四大方向:前端化、云端化、平台化和行业化。
在这个升级过程中,新的平台需要有新的能力做新的认知,新的认知催生新的需求和应用。
对于包括浪潮在内的 科技 公司来说,这是一次巨大的机会,同时也是一个不小的挑战,路漫漫其修远兮,必须上下而求索。雷锋网雷锋网雷锋网1、确定好映射端口号。可以通过百度查询,或者咨询软件提供商确定映射端口号。
2、固定电脑IP地址。手动给电脑设置静态IP地址上网。
3、固定电脑IP地址手动给电脑设置静态IP地址上网。
4、远程访问在互联网上的用户,通过访问这台新版tplink路由器WAN口IP地址即可。DNS是计算机域名系统的缩写,它是由解析器以及域名服务器组成的。域名服务器是指保存有该网络中所有主机的域名和对应IP地址,并具有将域名转换为IP地址功能的服务器。其中域名必须对应一个IP地址而IP地址不一定只对应一个域名。域名系统采用类似目录树的等级结构。域名服务器为客户机,服务器模式中的服务器方,它主要有两种形式:主服务器和转发服务器。在Internet上域名与IP地址之间是一对一或者多对一的,也可采用DNS轮询实现一对多,域名虽然便于人们记忆,但机器之间只认IP地址,它们之间的转换工作称为域名解析,域名解析需要由专门的域名解析服务器来完成,DNS就是进行域名解析的服务器。DNS命名用于Internet的TCP,IP网络中,通过用户友好的名称查找计算机和服务。当用户在应用程序中输入DNS名称时,DNS服务可以将此名称解析为与之相关的其他信息。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)