航天飞机的简介

航天飞机的简介,第1张

航天飞机
航天飞机集火箭,卫星和飞机的技术特点于一身,能像火箭那样垂直发射进入空间轨道,又能像卫星那样在太空轨道飞行,还能像飞机那样再入大气层滑翔着陆,是一种新型的多功能航天飞行器。它的结构主要由三大部分组成。①轨道飞行器,包括三副引擎火箭、驾驶员舱、乘务员舱和载货舱。②用作提供推进的外贮箱。③火箭助推器,共有两枚,使用固体燃料。航天飞机的主要用处是空间运输、卫星服务,它可以靠近其他航天器,为其输送物品及修理等服务项目。还可以进行星际观测,军事、地理观察及拍照。由于其本身体积较大(高20多米,长50多米),也可以做为大型空间建筑。航天飞机起飞时可以像火箭那样垂直发射,在运行过程中,为了减轻负担,可以把工作完毕后的固体燃料火箭助推器和推进外贮箱抛掉。航天飞机的主要机械在返回地面后经过整修还可以继续使用。
美国于1972年开始研制与实施航天飞机的计划。第一架航天飞机“企业号”1977年开始在各种复杂的地面上和大气层中试验。1981年首次用“哥伦比亚号”航天飞机在太空试验飞行,飞行三天后成功地返回地面。从此以后,载人的航天飞机开始进入太空。
航天飞机把人载入太空,在上面可以进行科学实验,比如太空育种,药物合成,晶体提纯,金属冶炼,宇宙观测等等,因为航天飞机上的物体处于失重状态,这是在地球上得不到的。所以可以做很多地球上因为重力影响没法做的实验。航天飞机的好处就是可以重复使用,节约经费。并且在返回地球的时候不用燃料,像鹰一样是靠滑翔降落到地面的。航天飞机的外形就像普通飞机一样。但它的表面必须有隔热层,否则飞回地球的时候会被和空气剧烈摩擦产生的热量烧毁!一个国家的航天技术标志着它的综合国力,你看看美国,俄罗斯都有航天飞机,咱们就没有。但是我们的神州系列飞船发展的也很快,要有信心!
天地往返穿梭器—航天飞机
1969年4月,美国宇航局提出建造一种可重复使用的航天运载工具的计划。1972年1月,美国正式把研制航天飞机空间运输系统列入计划,确定了航天飞机的设计方案,即由可回收重复使用的固体火箭助推器,不回收的两个外挂燃料贮箱和可多次使用的轨道器三个部分组成。经过5年时间,1977年2月研制出一架创业号航天飞机轨道器,由波音747飞机驮着进行了机载试验。1977年6月18日,首次载人用飞机背上天空试飞,参加试飞的是宇航员海斯(C•F•Haise)和富勒顿(G•Fullerton)两人。8月12日,载人在飞机上飞行试验圆满完成。又经过4年,第一架载人航天飞机终于出现在太空舞台,这是航天技术发展史上的又一个里程碑。
1981年4月12日,在卡纳维拉尔角肯尼迪航天中心聚集着上百万人,参观第一架航天飞机哥伦比亚号发射。宇航员翰•杨(John W•Young)和克里平(Robert L•Crippen)揭开了航天史上新的一页。这架航天飞机总长约56米,翼展约24米,起飞重量约2040吨,起飞总推力达2800吨,最大有效载荷295吨。它的核心部分轨道器长372米,大体上与一架DC—9客机的大小相仿。每次飞行最多可载8名宇航员,飞行时间7至30天,轨道器可重复使用100次。航天飞机集火箭,卫星和飞机的技术特点于一身,能像火箭那样垂直发射进入空间轨道,又能像卫星那样在太空轨道飞行,还能像飞机那样再入大气层滑翔着陆,是一种新型的多功能航天飞行器。
从1981年至1993年底,美国一共有5架航天飞机进行了59次飞行,其中哥伦比亚号15次,挑战者号10次,发现号17次,亚特兰蒂斯号12次,奋进号5次。每次载宇航员2至8名,飞行时间从2天到14天。在12年中,已有301人次参加航天飞机飞行,其中包括18名女宇航员。航天飞机的59次飞行中,在太空施放卫星50多颗,载2座空间站到太空轨道,发射了3个宇宙探测器,1个空间望远镜和1个γ射线探测器,进行了卫星空间回收和空间修理,开展了一系列科学实验活动,取得了丰硕的探测实验成果。
美国航天飞机创造了许多航天新纪录。航天飞机首航指令长约翰•杨6次飞上太空,是世界上参加航天次数最多的宇航员。1983年6月18日女宇航员莎丽•赖德(Sally K•Ride)乘挑战者号上天飞行,名列美国妇女航天的榜首。1983年8月30日,挑战者号把美国第一个黑人宇航员布鲁福德(Guion S•Bluford)送上太空飞行。1984年2月3日乘挑战者号上天的麦坎德利斯(B•McCandless),成为世界上第一位不系安全带到太空行走的宇航员。1984年4月6日挑战者号上天后,宇航员首次抓获和修理轨道上的卫星成功。1984年10月5日参加挑战者号飞行的莎丽文(Kathryn D•Sullivan)成为美国第一位到太空行走的女宇航员。1985年1月24日发现号升空,首次执行秘密的军事任务。1985年4月29日,第一位华裔宇航员王赣骏(Tayler Wang)乘挑战者号上天参加科学实验活动。1985年11月26日,亚特兰蒂斯载宇航员上天第一次进行搭载空间站试验。1992年5月7日奋进号首次飞行,宇航员在太空第一次用手工 *** 作抢救回收卫星成功。7月31日亚特兰蒂斯号上天,首次进行绳系卫得发电试验。9月12日奋进号将第一位黑人女宇航员,第一位日本记者和第一对宇航员夫妇载入太空飞行。
暴风雪号航天飞机首航成功
1988年11月15日莫斯科时间清晨6时,前苏联的暴风雪号航天飞机从拜科努尔航天中心首次发射升空,47分钟后进入距地面250千米的圆形轨道。它绕地球飞行两圈,在太空遨游3小时后,按预定计划于9时25分安全返航,准确降落在离发射地点12千米外的混凝土跑道上,完成了一次无人驾驶的试验飞行。
暴风雪号航天飞机大小与普通大型客机相差无几,外形同美国航天飞机极其相仿,机翼呈三角形。机长36米,高16米,翼展24米,机身直径56米,起飞重量105吨,返回后着陆重量为82吨。它有一个长183米,直径47米的大型货舱,能将30吨货物送上近地轨道,将20吨货物运回地面。头部有一容积70立方米的乘员座舱,可乘10人。科学家们认为,这次完全靠地面控制中心遥控机上的电脑系统,在无人驾驶的条件下自动返航并准确降落在狭长跑道上,其难度林比1981年美国航天飞机有人驾驶试飞大得多。首先,暴风雪号的主发动机不是装在航天飞机尾部,而是安装在能源号火箭上,这样就大大减轻了航天飞机的入轨重量,同时腾出位置安装小型机动飞行发动机和减速制动伞。其次,暴风雪号着陆时,可用尾部的小型发动机做有动力的机动飞行,安全准确地降落在狭长跑道上,万一着陆失败,还可以将航天飞机升起来进行第二次着陆,从而提高了可靠性。而美国航天飞机靠无动力滑翔着陆只能一次成功。第三,暴风雪号能象普通飞机那样借助副翼, *** 纵舵和空气制动器来控制在大气层内滑行,还准备有减速制动伞,在降落滑跑过程中当速度减慢到50千米/小时自动d出,使航天飞机在较短距离内停下来。暴风雪号首航成功,标志着前苏联航天活动跨入一个新的阶段,为建立更加完善的天地往返运输系统辅平了道路。原计划一年后进行载人飞行,但由于机上系统的安全可靠尚未得到充分保证,加之其后政治和经济等方面的原因,载入飞行的时间便推迟了。
附:“挑战者”号航天飞机爆炸
1986年1月28日,美国“挑战者”号航天飞机在第10次发射升空后,因助推火箭发生事故凌空爆炸,舱内7名宇航员(包括一名女教师)全部遇难。造成直接经济损失12亿美元,航天飞机停飞近3年,成为人类航天史上最严重的一次载人航天事故,使全世界对征服太空的艰巨性有了一个明确的认识。
遇难宇航员为斯科比、史密斯、麦克奈尔、杰维斯、鬼冢(夏威夷出生,日裔)、朱迪恩•雷斯尼克(女)、麦考利芙(女教师)。
美国东部时间当日上午11时39分12秒,美国佛罗里达州卡纳维拉尔角的肯尼迪航空中心10英里上空,在“轰”的一声巨响之后,“挑战者”号航天飞机凌空爆炸。美国全部航天飞机飞行因而暂停了3年,“星球大战”计划也遭受严重挫折。
美国哥伦比亚号航天飞机失事 7宇航员罹难
美国当地时间2月1日,载有七名宇航员的美国哥伦比亚号航天飞机在结束了为期16天的太空任务之后,返回地球,但在着陆前发生意外,航天飞机解体坠毁。
美东时间上午九9点(北京时间22:00),也就是在哥伦比亚号着陆前16分钟,该机突然从雷达中消失。
电视图像显示,解体的哥伦比亚号在德州的上空划出了数条白色的轨迹。
美国航空航天局并没有立即宣布包括一名以色列宇航员在内的全体船员已经遇难,但是肯尼迪机场现在已经降下半旗。目前在德州地区寻找哥伦比亚号残骸的工作仍在继续,航空航天局已经向民众发出警告,不要接触任何碎片,因为在航天飞机引擎上覆有毒性极强的化学涂料。
哥伦比亚号进行紧急着陆的航空可能性是不存在的,航天局的发言人凯勒-赫尔林向CNN表示:“在当时的情况下,恐怕哥伦比亚号根本没有选择的机会。”
事发之后,布什总统立即结束了戴维营的短暂休假,返回了白宫,密切关注事态的进一步发展。
哥伦比亚号是美国现有的四架航天飞机中服役时间最长的,此次的意外事件使人们回想起了1986年1月28日挑战者号的失事,当时机上七名宇航员全部罹难。
联邦调查局发言人安吉拉-贝尔表示,目前没有直接证据显示此次事件与恐怖分子有关。
哥伦比亚号发生意外时的飞行高度为203,000英尺,时速为12,500英里。
航空航天局的发言人凯瑟琳-沃森向全国公共广播网表示:“目前所有的飞行控制器都在努力寻找能够说明到底发生了什么问题的数据。”但在被问及是否能够有宇航员幸存时沃森流下了眼泪。
此次在哥伦比亚号上遇难的七名宇航员分别是:里克-赫兹本德、威廉-麦克库尔、麦克尔-安德森、大卫-布朗、凯尔帕娜-乔拉、劳里尔-克拉克以及以色列人伊兰-拉蒙。
以色列总理沙龙表示:“此次事件对于两国政府、两国人民以及遇难宇航员的家庭来说都是一个巨大的悲剧。”
航天飞机是一种可重复使用的由运载火箭发射的飞行器,用于进入地球轨道,在地球与轨道航天器之间运送人员和物资,并滑翔降落回地面。第一架航天飞机于1981年4月12日发射升空。航天飞机主要由3部分组成:带机翼的轨道器,用于运载航天员和物资;外部推进剂箱,用于携带供3台主发动机使用的液氢和液氧;一对大型固体推进剂捆绑式助推火箭。整个系统的起飞重量达2000吨,高56米。发射时,助推器和轨道器主发动机同时点火,推力达3100万牛顿。起飞后约两分钟,助推火箭被抛弃并用降落伞降落,回收后再次使用。轨道器将外部推进剂箱中的推进剂消耗完时,已获得99%的轨道高度,于是抛弃。此推进剂箱在坠入大气层时解体。虽然航天飞机像常规载人航天器一样垂直发射,但不同的是,它能像普通喷气式飞机一样滑翔降落在跑道上。轨道器在设计上可重复使用00次,降低了航天飞行的成本。航天飞机可将卫星和探测器装入它的货仓带到太空去施放,也可由航天员在太空中回收或修理轨道上出了问题的卫星。航天心机还可用作太空实验室,携带专门的研究设备进行各种科学实验。航天飞机完成任务返回地面远比升空时的难度与危险性要大。当轨道飞行器返回地球重入大气层时,它必须十分精确地调整好自己的状态和角度。由于机身与空气的剧烈摩擦,其外部可产生1500摄氏度的高温,如果没有防护装置,飞机将会熔化。所以,在航天飞机的外表覆盖了一层大小形状不同的黑色光亮的硅酸盐纤维瓷片,这些瓷片的隔热性能非常好,可以保证热量不被传导到飞行器上。航天飞机是迄今为止人类所制造的最复杂、最尖端的运载工具。它庞大而精密的系统由数百万个零部件组成,其中任何一个出现问题,都可能导致整个航天飞机毁灭。两架失事的航天飞机,一个是因为小小的密封圈发生泄漏,在起飞后不久发生了爆炸;一个是因为瓷片脱落击坏身,在重返大气层时发生机身解体。两次事故使十几名宇航员壮烈牺牲。人们在感激这些勇士,震惊这种灾难的同时,仍然会对科学事业充满不懈的激情。
目前只有美国拥有航天飞机,但由这些航天飞机所进行伟大事业,使人类对科学的认识产生了突飞猛进的作用。
航天飞机是世界上唯一的可重复使用的航天运载器。70-80年代,美国、苏联、法国和日本等国相继开始研制航天飞机,但由于技术和资金等原因,到目前只有美国研制的航天飞机投入使用。航天飞机用途广泛,可进行空间交会、对接、停靠、空间科学实验、发射回收或检修卫星。它曾在空间捕获一颗未能进入同步贵道的国际通信卫星6号,进行修理后,又把它送入同步轨道。它还发射过并三次整修哈勃空间望远镜。航天飞机通常可乘7人,飞行时间一般在2周以下,最长可达28天。
目前航天飞机的主要任务是向国际空间站运送宇航员和各种建设用部件和补养。美国原设想使用可多次重复使用的航天飞机可以节约花费。但结果全然不同,每架航天飞机的研制费非常高,最新的奋进号研制费达20亿美元,而且每次发射费用1亿多美元。因此至今只做了6架航天飞机,其中一架企业号为样机,另外有五架工作机,分别是哥伦比亚号、挑战者号、发现号、阿特兰蒂斯号和奋进号。航天飞机的可靠性还是非常高,自1986年1月挑战者号发射失败后一直到2002年4月为止已成功飞行过110次。

您问的应该是华为云远程桌面服务是否需要单独付费吧?
这个问题答案应该是需要付费。因为这种服务需要技术的支持,云远程桌面服务属于特殊的一种应用,所以肯定是需要付费的。
华为云,成立于2011年,隶属于华为公司,是华为公有云品牌,致力于提供专业的公有云服务,提供d性云服务器、对象存储服务、软件开发云等云计算服务,在北京、深圳、南京、美国等多地设立有研发和运营机构。2021年12月10日,华为方面宣布:搭载了“天算星座”计算平台的实验卫星成功入轨稳定运行,这是全球首颗云原生卫星。得益于此,华为云云原生首次在太空得到验证。


月球详细的资料
月球俗称月亮,也称太阴。月球的年龄大约也是46亿年,它与地球形影相随,关系密切。月球也有壳、幔、核等分层结构。最外层的月壳平均厚度约为 60-65公里。月壳下面到1000公里深度是月幔,它占了月球的大部分体积。月幔下面是月核,月核的温度约为1000度,很可能是熔融状态的。月球直径约3476公里,是地球的3/11。体积只有地球的1/49,质量约7350亿亿吨,相当于地球质量的1/81,月面的重力差不多相当于地球重力的 1/6。
月球上面有阴暗的部分和明亮的区域。早期的天文学家在观察月球时,以为发暗的地区都有海水覆盖,因此把它们称为“ 海 ”。著名的有云海、湿海、静海等。而明亮的部分是山脉,那里层峦叠嶂,山脉纵横,到处都是星罗棋布的环形山。位于南极附近的贝利环形山直径295公里,可以把整个海南岛装进去。最深的山是牛顿环形山,深达8788米。除了环形山,月面上也有普通的山脉。高山和深谷叠现,别有一番风光。
月球的正面永远向着地球。另一方面,除了在月面边沿附近的区域因天秤动而间中可见以外,月球的背面绝大部分不能从地球看见。在没有探测器的年代,月球的背面一直是个未知的世界。
月球背面的一大特色是它几乎没有月海这种较暗的月面特征。而当探测器运行至月球背面时,它将无法与地球直接通讯。
轨道资料
平均轨道半径 384,400千米
轨道偏心率 00549
近地点距离 363,300千米
远地点距离 405,500千米
平均公转周期 27天7小时43分11559秒
平均公转速度 1023千米/秒
轨道倾角 在2858°与1828°之间变化
(与黄道面的交角为5145°)
升交点赤经 12508°
近地点辐角 31815°
物理特征
赤道直径 3,4762 千米
两极直径 3,4720 千米
扁率 00012
表面面积 3976×107平方千米
扁率 00012
体积 2199×1010 立方千米
质量 7349×1022 千克
平均密度 水的3350倍
赤道重力加速度 162 m/s2
地球的1/6
逃逸速度 238千米/秒
自转周期 27天7小时43分11559秒
(同步自转)
自转速度 16655 米/秒(于赤道)
自转轴倾角 在360°与669°之间变化
(与黄道的交角为15424°)
反照率 012
满月时视星等 -1274
表面温度(t) -233~123℃ (平均-23℃)
大气压 13×10-10 千帕
月球约一个农历月绕地球运行一周,而每小时相对背景星空移动半度,即与月面的视直径相若。与其他卫星不同,月球的轨道平面较接近黄道面,而不是在地球的赤道面附近。
相对于背景星空,月球围绕地球运行(月球公转)一周所需时间称为一个恒星月;而新月与下一个新月(或两个相同月相之间)所需的时间称为一个朔望月。朔望月较恒星月长是因为地球在月球运行期间,本身也在绕日的轨道上前进了一段距离。
因为月球的自转周期和它的公转周期是完全一样的,我们只能看见月球永远用同一面向著地球。自月球形成早期,月球便一直受到一个力矩的影响引致自转速度减慢,这个过程称为潮汐锁定。亦因此,部分地球自转的角动量转变为月球绕地公转的角动量,其结果是月球以每年约38 毫米的速度远离地球。同时地球的自转越来越慢,一天的长度每年变长15 微秒。
月球对地球所施的引力是潮汐现象的起因之一。月球围绕地球的轨道为同步轨道,所谓的同步自转并非严格。由于月球轨道为椭圆形,当月球处于近日点时,它的自转速度便追不上公转速度,因此我们可见月面东部达东经98度的地区,相反,当月处于远日点时,自转速度比公转速度快,因此我们可见月面西部达西经98度的地区。这种现象称为天秤动。又由于月球轨道倾斜于地球赤道,因此月球在星空中移动时,极区会作约7度的晃动,这种现象称为天秤动。再者,由于月球距离地球只有60地球半径之遥,若观测者从月出观测至月落,观测点便有了一个地球直径的位移,可多见月面经度1度的地区。这种现象称为天秤动。
严格来说,地球与月球围绕共同质心运转,共同质心距地心4700千米(即地球半径的2/3处)。由于共同质心在地球表面以下,地球围绕共同质心的运动好像是在“晃动”一般。从地球北极上空观看,地球和月球均以迎时针方向自转;而且月球也是以迎时针绕地运行;甚至地球也是以迎时针绕日公转的。
很多人不明白为甚么月球轨道倾角和月球自转轴倾角的数值会有这么大的变化。其实,轨道倾角是相对于中心天体(即地球)而言的,而自转轴倾角则相对于卫星(即月球)本身的轨道面。在这个定义习惯很适合一般情况(例如人造卫星的轨道)而且是数值相当固定的,但月球却非如此。
月球的轨道平面(白道面)与黄道面(地球的公转轨道平面)保持著5145 396°的夹角,而月球自转轴则与黄道面的法线成15424°的夹角。因为地球并非完美球形,而是在赤道较为隆起,因此白道面在不断进动(即与黄道的交点在顺时针转动),每67935天(185966年)完成一周。期间,白道面相对于地球赤道面(地球赤道面以2345°倾斜于黄道面)的夹角会由 2860°(即2345°+ 515°) 至1830°(即2345°- 515°)之间变化。同样地,月球自转轴与白道面的夹角亦会介乎669°(即515° + 154°)及360°(即515° - 154°)。月球轨道这些变化又会反过来影响地球自转轴的倾角,使它出现±0002 56°的摆动,称为章动。
白道面与黄道面的两个交点称为月交点--其中升交点(北点)指月球通过该点往黄道面以北;降交点(南点)则指月球通过该点往黄道以南。当新月刚好在月交点上时,便会发生日食;而当满月刚好在月交点上时,便会发生月食;
月球的周期 名称 Value (d) 定义
恒星月 27321 661 相对于背景恒星
朔望月 29530 588 相对于太阳(月相)
分点月 27321 582 相对于春分点
近点月 27554 550 相对于近地点
交点月 27212 220 相对于升交点
月球轨道的其它特征 名称 数值 (d) 定义
默冬章 (repeat phase/day) 19 年
平均月地距离 ~384 400 千米
近地点距离 ~364 397 千米
远地点距离 ~406 731 千米
轨道平均偏心率 00549003
交点退行周期 1861 年
近地点运动周期 885 年
食年 3466 天
沙罗周期 (repeat eclipses) 18 年 10/11 天
轨道与黄道的平均倾角 5°9'
月球赤道与黄道的平均倾角 1°32'
人类登月探索:
第一件到达月球的人造物体是前苏联的无人登陆器月球2号,它于1959年9月14日撞向月面。月球3号在同年10月7日拍摄了月球背面的照片。月球9号则是第一艘在月球软著陆的登陆器,它于1966年2月3日传回由月面上拍摄的照片。另外,月球10号于1966年3月31日成功入轨,成为月球第一颗人造卫星。
在冷战期间,美利坚合众国和前苏联一直希望在太空科技领先对方。这场太空竞赛在1969年7月20日第一名人类登陆月球时进入高潮。美利坚合众国阿波罗11号的指令长尼尔·阿姆斯特朗是踏足月球的第一人,而尤金·塞尔南则是最后一个站立在月球上的人,他是1972年12月阿波罗17号任务的成员。参看: 月球宇航员列表
阿波罗11号的太空人留下了一块9英吋乘7英吋的不锈钢牌匾在月球表面,以纪念这次登陆及为有可能发现它的其他生物提供一些资料。
牌匾上绘有地球的两面,并有三名太空人及当时美利坚合众国总统尼克逊的签署。
6次的太阳神任务及3次无人月球号任务(月球16、20、24号)把月球上的岩石及土壤样本带回地球。
在2004年2月,美利坚合众国总统乔治·沃克·布什提出于2020年前派人重新登月。欧洲航天局及中华人民共和国亦有计划发射探测器前往月球。欧洲的Smart 1探测器于2003年9月27日升空,并于2004年11月15日进入绕月轨道。它将会勘察月球环境及制作月面X射线地图。
中华人民共和国亦积极开展探月计划,并寻求开采月球资源的可行性,尤其是氦同位素氦-3这种有望成为未来地球能源的元素。有关中华人民共和国探月计划,见嫦娥工程条目。
日本及印度亦不甘后人。日本已初步订出未来探月的任务。日本的宇宙航空研究开发机构甚至已著手计划的有人的月球基地。印度则会先发射无人绕月探测器Chandrayan。
有关月亮的神话:
在中华人民共和国古代神话中,关于月亮的故事数不胜数。在古希腊神话中,月亮女神的名字叫阿尔忒弥斯,她是太阳神阿波罗的孪生妹妹,同时她也是狩猎女神。月球的天文符号好象弯弯的月牙儿,象征着阿尔忒弥斯的神弓。
月球是地球唯一的天然卫星,是距离我们最近的天体,它与地球的平均距离约为384401千米。它的平均直径约为3476千米,比地球直径的1/4 稍大些。月球的表面积有3800万千米,还不如我们亚洲的面积大。月球的质量约7350亿亿吨,相当于地球质量的1/81,月面重力则差不多相当于地球重力的1/6。
月球的轨道运动 月球以椭圆轨道绕地球运转。这个轨道平面在天球上截得的大圆称“白道”。白道平面不重合于天赤道,也不平行于黄道面,而且空间位置不断变化。
周期173日。
月球的自转 月球在绕地球公转的同时进行自转,周期2732166日,正好是一个 恒星月,所以我们看不见月球背面。这种现象我们称“同步自转”,几乎是卫星世界的普
遍规律。一般认为是行星对卫星长期潮汐作用的结果。天平动是一个很奇妙的现象,它使得我们得以看到59%的月面。主要有以下原因:
1。在椭圆轨道的不同部分,自转速度与公转角速度不匹配。 2。白道与赤道的交角。
月球的物理状况---月面的地形主要有:
环形山 这个名字是伽利略起的。它是月面的显著特征,几乎布满了整个月面。 最大的环形山是南极附近的贝利环行山,直径295千米,比海南岛还大一点。小的环行山
甚至可能是一个几十厘米的坑洞。直径不小于1000米的大约有33000个。占月面表面积的 7-10%。
有个日本学者1969年提出一个环形山分类法,分为克拉维型(古老的环形山,一般都
面目全非,有的还山中有山)哥白尼型(年轻的环形山,常有“辐射纹”,内壁一般带有
同心圆状的段丘,中央一般有中央峰)阿基米德形(环壁较低,可能从哥白尼型演变而来 )碗型和酒窝型(小型环形山,有的直径不到一米)。
月海 肉眼所见月面上的阴暗部分实际上是月面上的广阔平原。由于历史上 的原因,这个名不副实的名称保留到了现在。
已确定的月海有22个,此外还有些地形称为“月海”或“类月海”的。公认的22 个绝大多数分布在月球正面。背面有3个,4个在边缘地区。在正面的月海面积略大于
50%,其中最大的“风暴洋” 面积越五百万平方公里,差不多九个法国的面积总和。 大多数月海大致呈圆形,椭圆形,且四周多为一些山脉封闭住,但也有一些海是
连成一片的。除了“海”以外,还有五个地形与之类似的“湖”----梦湖、死湖、夏 湖、秋湖、春湖,但有的湖比海还大,比如梦湖面积7万平方千米,比汽海等还大得
多。 月海伸向陆地的部分称为“湾”和“沼”,都分布在正面。湾有五个:露湾、暑 湾、中央湾、虹湾、眉月湾;沼有腐沼、疫沼、梦沼三个,其实沼和湾没什么区别。
月海的地势一般较低,类似地球上的盆地,月海比月球平均水准面低1-2千米,
个别最低的海如雨海的东南部甚至比周围低6000米。月面的返照率(一种量度反射太阳光本领的物理量)也比较低,因而看起来现得较黑。
月陆和山脉 月面上高出月海的地区称为月陆,它一般比月海水准面高2-3千 米,由于它返照率高,因而看来比较明亮。在月球正面,月陆的面积大致与月海相等
但在月球背面,月陆的面积要比月海大得多。 从同位素测定知道月陆比月海古老得多,是月球上最古老的地形特征。
在月球上,除了犬牙交差的众多环形山外,也存在着一些与地球上相似的山脉。月球上的山脉常借用地球上的山脉名,如阿尔卑斯山脉,高加索山脉等等,其中最长的山脉为亚平宁山脉,绵延1000千米,但高度不过比月海水准面高三,四千米。山脉上也有些峻岭山峰,过去对它们的高度估计偏高。现在认为大多数山峰高度与地球山峰高度相仿,最高的山峰(亦在月球南极附近)也不过9000米和 8000米。
月面上6000米以上的山峰有6个,5000-6000米20个,4000-5000米则有80个,1000米以 上的有200个。
月球上的山脉有一普遍特征:两边的坡度很不对称,向海的一边坡度甚大,有时 为断崖状,另一侧则相当平缓。
除了山脉和山群外,月面上还有四座长达数百千米的峭壁悬崖。其中三座突出在 月海中,这种峭壁也称“月堑”。
月面辐射纹 月面上还有一个主要特征是一些较“年轻”的环形山常带有美丽的“辐射纹”,这是一种以环形山为辐射点的向四面八方延伸的亮带,它几乎以笔直的方向穿过山系、月海和环形山。辐射文长度和亮度不一,最引人注目的是第谷环形山的辐射纹,最长的一条长1800千米,满月时尤为壮观。其次,哥白尼和开普勒两个环形山也有相当美丽的辐射 纹。据统计,具有辐射纹的环形山有50个。
形成辐射纹的原因至今未有定论。实质上,它与环形山的形成理论密切联系。现在许多人都倾向于陨星撞击说,认为在没有大气和引力很小的月球上,陨星撞击可能使高温碎块飞得很远。而另外一些科学家认为不能排除火山的作用,火山爆发时的喷 射也有可能形成四处飞散的辐射形状。
月谷(月隙) 地球上有着许多著名的裂谷,如东非大裂谷。月面上也有这种构造----那些看来弯弯曲曲的黑色大裂缝即是月谷,它们有的绵延几百到上千千米,宽度从几千米到几十千米不等。那些较宽的月谷大多出现在月陆上较平坦的地区,而那些较窄、较小的月谷(有时又称为月溪)则到处都有。最著名的月谷是在柏拉图环形山的东南连结雨海和冷海的阿尔卑斯大月谷,它把月面上的阿尔卑斯山拦腰截断,很是壮观。从太空拍得的照片估计,它长达130千米,宽10-12千米。
从何而来?---月球形成之迷
月球是外星人的宇宙飞船:这并非无稽之谈,因为科学的动力就在于大胆的想象,没有创见就不会有新的突破,爱因斯坦提出的相对论当时又何尝不是无稽之谈。而中国人在科学上欠缺的正是这种大胆的创见。
我们为什么总看不到月球的背面
月球总以一个面对着地球是因为月球的自传和公转周期是相同的(2732166日)
要理解这一现象,你可以做一个实验画一个圆,标出正东西南北方向你站在圆心(代表地球),再找一个朋友,站在圆上,让他面部朝前(即不扭动脖子),沿着圆逆时针挪动,要求他在沿着圆挪动的时候,保持面部始终朝向圆心,也就是你那么这样一个过程就基本模拟了月亮饶地球转动的过程
很明显,在这样一个过程中,你的朋友始终是一个面(前面)面向你下面理解为什么在这样一个过程中,公转周期等于自转周期
你的朋友从你的正北方出发,绕着你转动,再一次出现在正北方的时候,他就完成了一个公转周期(类似于月亮饶地球公转一周的时间)
下面看看他的自转时间是多少我们不妨还设定当你的朋友在你的正北位置,面部朝向正南时的姿态为初始姿态然后我们就可以发现当你的朋友逆时针挪动到你的正西方位置时,他的自转姿态就发生了逆时针90度的旋转(如果你的朋友在过程中不"自转"的话,那么当他在此位置时,他面向的不是你,而仍然是朝向正南方向而实际实验时你的朋友在此位置却是朝向正东方向,所以他相对与初始位置逆时针绕自己旋转了90度
类似地,当他走到你的正南方向时,他相对于初始姿态自传了180度当他走到你的正东方向时,他相对于初始姿态自传了270度当他再次走到你的正北方向时,他相对于初始姿态自传了360度也就是说他完成了一个自转周期
因为完成一个公转过程就刚好完成了一个自转过程,所以从时间上来看,这个自转周期就等于公转周期因为在整个过程中,你的朋友总是以身体面部朝向你,也就是说,月亮总是以一个面朝向地球
广寒宫——月球
每当夜幕降临,一轮明月升上夜空,清澈的月光洒满大地,让人产生无数情思遐想。文人墨客更是对月亮倍加青睐,唐代诗人张若虚的“江上何人初见月,江月何年初照人”,还有宋代文学家苏轼的“明月几时有,把酒问青天”,都可称得上是脍炙人口的咏月佳句。
月球俗称月亮,也称太阴。在中国古代神话中,关于月亮的故事数不胜数。古希腊神话中,月亮女神的名字叫阿尔特弥斯,同时她也是狩猎女神。月球的天文符号好象弯弯的娥眉,同时象征着阿尔特弥斯的神弓。
皓月当空,我们能够清楚地看到它上面有阴暗的部分和明亮的区域。早期的天文学家在观察月球时,以为发暗的地区都有海水覆盖,因此把它们称为 “海”。著名的有云海、湿海、静海等。而明亮的部分是山脉,那里层峦叠嶂,山脉纵横,到处都是星罗棋布的环形山。位于南极附近的贝利环形山直径295公里,可以把整个海南岛装进去。最深的环形山是牛顿环形山,深达8788公里。除了环形山,月面上也有普通的山脉。高山和深谷叠现,别有一番风光。
月球的年龄,大约也是46亿年,它与地球形影相随,关系密切。月球也有壳、幔、核等分层结构。最外层的月壳平均厚度约为60~65公里。月壳下面到1000公里深度是月幔,它占了月球的大部分体积。月幔下面是月核,月核的温度约为1000度,很可能是熔融状态的。月球直径约3476公里,是地球的 3/11。体积只有地球的1/49,质量约7350亿亿吨,相当于地球质量的1/81,月面的重力差不多相当于地球重力的1/6。
月球的形成有以下几个观点。
一分裂说。这是最早解释月球起源的一种假设。早在1898年,著名生物学家达尔文的儿子乔治·达尔文就在《太阳系中的潮汐和类似效应》一文中指出,月球本来是地球的一部分,后来由于地球转速太快,把地球上一部分物质抛了出去,这些物质脱离地球后形成了月球,而遗留在地球上的大坑,就是现在的太平洋。这一观点很快就收到了一些人的反对。他们认为,以地球的自转速度是无法将那样大的一块东西抛出去的。再说,如果月球是地球抛出去的,那麽二者的物质成分就应该是一致的。可是通过对“阿波罗12号”飞船从月球上带回来的岩石样本进行化验分析,发现二者相差非常远。
二俘获说。这种假设认为,月球本来只是太阳系中的一颗小行星,有一次,因为运行到地球附近,被地球的引力所俘获,从此再也没有离开过地球。还有一种接近俘获说的观点认为,地球不断把进入自己轨道的物质吸积到一起,久而久之,吸积的东西越来越多,最终形成了月球。但也有人指出,向月球这样大的星球,地球恐怕没有那麽大的力量能将它俘获。
三同源说。这一假设认为,地球和月球都是太阳系中浮动的星云,经过旋转和吸积,同时形成星体。在吸积过程中,地球比月球相应要快一点,成为“哥哥”。这一假设也受到了客观存在的挑战。通过对“阿波罗12号”飞船从月球上带回来的岩石样本进行化验分析,人们发现月球要比地球古老得多。有人认为,月球年龄至少应在70亿年左右。
四大碰撞说。这是近年来关于月球成因的新假设。1986年3月20日,在休士顿约翰逊空间中心召开的月亮和行星讨论会上,美国洛斯阿拉莫斯国家实验室的本兹、斯莱特里和哈佛大学史密斯天体物理中心的卡梅伦共同提出了大碰撞假设。这一假设认为,太阳系演化早期,在星际空间曾形成大量的“星子”,星子通过互相碰撞、吸积而长大。星子合并形成一个原始地球,同时也形成了一个相当于地球质量014倍的天体。这两个天体在各自演化过程中,分别形成了以铁为主的金属核和由硅酸盐构成的幔和壳。由于这两个天体相距不远,因此相遇的机会就很大。一次偶然的机会,那个小的天体以每秒5千米左右的速度撞向地球。剧烈的碰撞不仅改变了地球的运动状态,使地轴倾斜,而且还使那个小的天体被撞击破裂,硅酸盐壳和幔受热蒸发,膨胀的气体以及大的速度携带大量粉碎了的尘埃飞离地球。这些飞离地球的物质,主要有碰撞体的幔组成,也有少部分地球上的物质,比例大致为085:015。在撞击体破裂时与幔分离的金属核,因受膨胀飞离的气体所阻而减速,大约在4小时内被吸积到地球上。飞离地球的气体和尘埃,并没有完全脱离地球的引力控制,他们通过相互吸积而结合起来,形成全部熔融的月球,或者是先形成几个分离的小月球,在逐渐吸积形成一个部分熔融的大月球。
月亮成分
45亿年前,月球表面仍然是液体岩浆海洋。科学家认为组成月球的矿物克里普矿物(KREEP) 展现了岩浆海洋留下的化学线索。KREEP实际上是科学家称为“不兼容元素”的合成物--那些无法进入晶体结构的物质被留下,并浮到岩浆的表面。对研究人员来说,KREEP是个方便的线索,来明了月壳的火山运动历史,并可推测彗星或其他天体撞击的频率和时间。
月壳由多种主要元素组成,包括:铀、钍、钾、氧、硅、镁、铁、钛、钙、铝及氢。当受到宇宙射线轰击时,每种元素会发射特定的伽玛辐射。有些元素,例如:铀、钍和钾,本身已具放射性,因此能自行发射伽玛射线。但无论成因为何,每种元素发出的伽玛射线均不相同,每种均有独特的谱线特征,而且可用光谱仪测量。
直至现在,人类仍未对月球元素的丰度作出面性的测量。现时太空船的测量只限于月面一部分。
天秤动
由于月球轨道为椭圆形,当月球处于近日点时,它的自转速度便追不上公转速度,因此我们可见月面东部达东经98度的地区,相反,当月处于远日点时,自转速度比公转速度快,因此我们可见月面西部达西经98度的地区。这种现象称为经天秤动。

我来回答,国内GPS现状

一、国外市场发展现状与趋势
目前,以GPS为代表的卫星导航应用产业已成为当今国际公认的八大无线产业之一。随着技术的进步、应用需求的增加,GPS以全天候、高精度、自动化、高效率等显著特点及其所独具的定位导航、授时校频、精密测量等多方面的强大功能,已涉足众多的应用领域,使GPS成为继蜂窝移动通信和互联网之后的全球第三个IT经济新增长点。
1�主要应用领域
(1)民用领域
在定位导航方面,GPS的使用对象主要是汽车、船舶和飞机等运动物体。例如船舶远洋导航和进港引水,飞机航路引导和进场降落,汽车自主导航定位,地面车辆跟踪和城市智能交通管理等。此外,对于警察、消防及医疗等部门的紧急救援、追踪目标和个人旅游及野外探险的导引等,GPS都具有得天独厚的优势。在日常生活中,GPS还可用于人身受到攻击危险时的报警,特殊病人、少年儿童的监护与救助,生活中遇到各种困难时的求助等。使用时只需按动带有移动位置服务的GPS手机按钮,警务监控中心和急救中心在几秒钟内便可获知报警人的位置并提供及时的救助。
目前国际上具有代表性的GPS公司,主推测量仪器的有天宝公司、徕卡公司、诺华达公司和佳瓦特公司等,主推导航设备和GPS OEM板的有高明公司、麦哲伦公司、摩托罗拉公司、洛克韦尔公司和瑟孚科技公司等。
(2)军事领域
在军事领域,GPS也已从当初的为军舰、飞机、战车、地面作战人员等提供全天候、连续实时、高精度的定位导航,扩展到成为目前精确制导武器复合制导的一种重要技术手段。其工作原理是利用d上安装的GPS接收机接收4颗以上导航卫星播发的信号来修正导d的飞行路线,提高制导精度。区别于误差较大、精度较低的民用标准定位服务,军方使用的是精密定位服务。资料显示,未配置GPS制导系统之前,美军的“战斧”(BGM-109C)巡航导d的圆概率误差约为9米,在其惯性+地形匹配制导系统中加入GPS后,圆概率误差降至3米,制导精度大大提高。
2�全球GPS产业的结构与现状
GPS开始进入民用之后,使用者终端的GPS产品便成了当前GPS主要的市场内容。一般来说,GPS的使用者终端主要是指各种用途的GPS接收机,例如用于航空和航海的接收机、汽车导航设备、用于登山和休闲的手持式接收机等类型的终端产品,而一般手持式GPS产品的组成部分,就如同移动电话或个人数字助理(PDA)的结构一样,也包括了内部的天线、芯片组和电池等,以及外部的按键和LCD面板等相关零组件。目前全球GPS相关厂商的产品中又以GPS应用产品与内部的专用芯片组发展最受关注。
截至去年,全球约有十余家生产GPS专用芯片的制造商,除了少数几家是以GPS芯片为主要产品的制造商,如瑟孚科技公司,其它则多为以通信芯片为主的制造商,如飞利浦、摩托罗拉和科胜讯等。据估计,到2006年GPS芯片的全球市场值将达50亿美元。
从上世纪80年代初期第一个GPS商用产品出现至今,GPS产品重量从100磅(约为45千克)降为100克,而价格也从十几万美元降为现在的几百美元。目前全球GPS应用产品的制造商已超过30家以上,主要领导厂商有高明国际公司、麦哲伦公司和天宝导航有限公司等。
天宝公司以生产系统端的GPS产品为主,从军用空军流量控制系统到航空用雷达系统皆在其营运范围之内。近年来,该公司进一步结合了无线通信的定位技术,例如与英飞凌公司合作开发用于无线通信系统端的First GPS架构与M-loc模块,以期在无线定位设备市场中抢占先机。
3�全球GPS市场状况
随着应用范围的扩展,GPS产品也逐渐成为全球无线通信终端市场一项重要的产品,推动GPS产品市场高度成长的主要因素是汽车导航系统和结合无线通信的GPS产品的普及化。根据市场研究公司ABI的报告,2001年,这两类产品在GPS应用产品市场的比率合计约为387%,到了2005年则将成长至536%,其它产品,如航空、航海、测量和农业等合起来仅占464%。
不论是汽车导航系统或是GPS的通信应用产品,主要的区域市场都是在美、欧、日等三个地区。以汽车导航系统为例,由于电子地图与消费电子技术的高度发展,再加上智能型运输系统的成熟,使得日本成为目前全球汽车导航系统普及率与市场值最高的国家。2000年日本的汽车导航系统销售值约为670万美元,占全球市场的779%,而欧洲与北美分别仅占139%与69%。不过2004年后,随着汽车导航系统的日渐普及,欧洲与北美的市场将成长至710万美元与590万美元,各占市场比例的27%与225%,而日本市场则因为普及率高使成长率逐渐趋缓。
目前已经推出整合无线通信与GPS解决方案的厂商有快速跟踪公司(SnapTrack)、瑟孚科技、天宝公司等,其中,又以快速跟踪公司与瑟孚科技两家发展较为积极,且已有移动通信运营者或手机制造厂即将采用这两家公司的解决方案。
成立于1995年的快速跟踪公司是美国通信大厂高通公司的子公司,自成立以来即以GPS应用于无线通信的技术为发展重点,目前快速跟踪公司与高通公司合作采用结合手机端与系统端的混合式解决方案作为无线定位服务之用,在手机端部分,由内建于手机中的高通公司MSM3300芯片组将GPS专用的LNA、SAW、LC Filter以及GPS One处理器等组件整合在一起,让手机得以具备接收卫星定位信号之功能,另一方面,则在系统端加装快速跟踪公司的MMASIC芯片组接收GPS信号,再由系统端发射定位信号至手机端,以解决多路信号衰减的问题。目前与该公司有合作关系的公司包括摩托罗拉、日本NEC、日本电信电话移动通信网公司(NTT DoCoMo)和美国得州仪器公司等。
瑟孚科技公司无线定位技术的解决方案与快速跟踪公司相似,也就是将其SiRFLoc架构装设在无线网络系统端,让无线基地台可以接收与传送卫星定位资料,另一方面则是将其SiRFstar芯片组嵌入手机的基频上,或是采用IP整合的方式将GPS接收机与手机芯片组整合为一。目前瑟孚科技公司在无线通信领域主要的合作伙伴有日本电信电话移动通信网公司、爱立信、诺基亚和信号软件公司等。
虽然具有GPS定位功能的手机市场潜力颇为看好,就现阶段而言仍有几项障碍亟待克服:首先,不论手机采用的是内建GPS芯片或是用外接GPS模块作为解决方案,将无可避免地提高手机成本,也影响消费者购买的意愿;其次,GPS组件运作时将会大幅提高手机的耗电量;最后,目前具有提供整合GPS芯片与无线通信技术的公司仍屈指可数,且手机制造大厂是否愿意采用现有的解决方案,或是另外自行开发仍是未定之数。
通过近20年的发展,GPS产品已逐渐转变为消费电子产品,且所能应用的范围已扩展到日常生活中的通信、PDA、定位信息等。不过,以现阶段来看,由于GPS接收机的单芯片化技术、价格以及市场应用服务等仍未臻成熟,因此,在乐观地看待此市场发展时,诸如GPS IC设计的技术是否能达到手机或PDA所需的最小体积与耗电量、成本是否能降低以及内建GPS的新手机是否能引起消费者的青睐等问题,仍必须审慎地深入评估。
4�全球GPS市场预测
根据估计,目前世界上有超过100家的公司正在研制各种各样的GPS用户接收机。大批量的OEM板接收机的价格将从1995年标准定位服务接收机的每片150美元降低到现在的40-50美元左右。随着接收机价格的下降,GPS市场将会像PC机市场那样呈指数增长的趋势。
目前,GPS市场呈现两种趋势:一是硬件价格每年持续下降;二是用户的各类应用软件不断增加。这也是为什么消费类GPS产品的价格下降得如此之快而功能众多的商用和专用GPS设备仍保持在相当高的水平上的原因。特别是在商用GPS市场中,各种各样的软件快速发展,数量不断增加,这些都是GPS产品产量激增的根本动力。在消费类GPS产品市场中,软件不是影响成本的主要原因,因而硬件价格不断下降,是零售GPS产品的价格不断降低的原因。2001年,美国国家公共管理研究院所进行的调查表明,全球每年的GPS市场已达到120亿美元。随着单元价格降至100美元以下,GPS将大量走向民用。
另外,GPS市场增长也将带动相关芯片的发展,用于GPS的芯片将会在最近几年保持强劲增长,并且承受的价格压力将会比其他半导体产品更加温和。
二、我国卫星导航应用的市场现状与发展趋势
1�市场发展现状
GPS卫星导航定位技术于上世纪80年代末引入中国,目前主要在大地测量(测绘、勘探)、海上渔业和车辆定位监控等领域得到了比较广泛的应用。在全球GPS应用领域中,车辆应用所占的比重最大,目前约占总数的40%以上。1996~1997年间是GPS车辆跟踪系统市场的调整和充实时期。主要是公安、金融等部门利用其专用的常规无线电台(异频单工电台)通信系统和模拟集群系统,在全国三四十个城市建成了金融运钞车和公安交警车辆跟踪系统。1998~2000年GPS车辆跟踪系统市场出现了快速增长的势头。随着我国GSM数字移动通信系统的快速发展与全国普及,作为系统瓶颈问题的通信网络通过采用GSM公众网的短信息服务找到了新的出路,这对GPS车辆跟踪系统的发展起着极大的促进作用。
我国现在拥有世界上最大潜力的卫星导航应用市场。经过十多年的发展,我国的卫星导航用户设备市场化的条件日趋成熟,批量化用户群体正在逐步形成,已进入应用行业高速发展的时期。美国联邦通信委员会规定,到2005年美国95%的用户手机必须配有定位能力,2003年底前,95%的新手机有定位能力。而移动电话与GPS结合是最好的解决办法。目前,国际上一些主流手机制造商如诺基亚、爱立信和三星等已开始使用集成的GPS芯片,而日本的日本电信电话移动通信网公司、KDDI和美国的Sprint、Verizon、网信公司等电信运营商也已开始或计划提供基于GPS手机的位置服务。
随着我国经济的不断发展,特别是在加入WTO之后,完全可以相信,具有定位功能的GPS移动电话在中国将会有巨大的市场发展潜力,几年之后将超越车辆应用,成为GPS应用最大的领域。“联通无限”其中有一个功能是“定位之星”,它基于GPS One,可提供目前移动通信领域精度最高、最直观的位置服务,取代短信获取位置信息的方式,用户通过手机或网上地图可实现精确到5米的定位。有了这个功能,从交警维持交通安全、公安破案、物流的传输到出租司机及时地掌握交通情况,甚至孩子迷失或家人晚归,都可以利用GPS One提供的正确位置信息,获得其所在位置,极大地提高工作效率,为生活带来便捷。
“定位之星”通过卫星传输信息,并经过中国联通GPS One服务器,发送到用户手机上。一旦将GPS与无线通信和互联网结合起来,消费市场更将蓬勃发展。特别是便宜实用、能进入家庭以及与个人关系密切的商品在中国将会有市场,并大有可为。这方面的典型应用不少,如PDA、个人定位产品(如寻人器、引路仪、急救报警等)以及贵重物品追踪器和气象探空仪等。
2�GPS在中国的发展趋势
国内GPS市场呈现出两个重点发展趋势。
(1)以车载导航为核心的移动目标监控、管理与服务系统。
在GPS应用领域,车辆应用所占的比例较大。最初GPS车辆应用一般分为车辆跟踪和车辆导航两大系统。但当摩托罗拉公司推出集车辆导航与跟踪于一体的车辆信息系统后,它就成了发展的方向。
GPS车辆定位监控系统主要有自导航应用和中心监控两种方式。车辆监控系统是集GPS技术、无线通信技术和地理信息系统技术于一体的综合车辆管理系统。一般行业用户的车船队监控都采用中心监控方式,系统由监控中心、位于监控中心的主站和安装在移动车辆上的子站等3部分构成。系统的工作原理是:安装在车辆上的GPS接收机根据收到的卫星信息计算出车辆的当前位置,通信控制器从GPS接收机输出的信号中提取所需要的位置、速度和时间信息,结合车辆身份等信息形成数据包,然后通过无线信道发往控制中心。控制中心的主站接收子站发送的数据,并从中提取出定位信息,根据各车辆的车号和组号等,在监控中心的电子地图上显示出来。同时,控制中心的系统管理员可以查询各车辆的运行状况,根据车流量合理调度车辆。
以车辆防盗为例,一般分为静态车辆防盗与动态车辆追踪两种。前者是指车主离开汽车,停泊的车辆遭遇偷盗、毁坏和移动时,车辆通过自身的监控系统向GPS监控中心发出警报,并自动与车主手机联系、电话报警等。后者则可对行驶中的被盗车辆进行定位跟踪、车况监听、车迹记录,甚至控制车辆断电和断油等。
(2)面向个人消费者的GPS终端产品。
芯片的小型化技术、生产成本的降低、体积与耗电量的减小等有利因素,使GPS产品走下神坛、深入到人们的日常生活中。目前面向个人消费者的产品主要有车载自主导航系统、移动监控终端以及消费类电子产品。
移动监控终端是移动目标监控系统的关键部分。有用于集装箱等货物、车辆的跟踪等领域的隐蔽式安装产品,也有多功能的综合车载平台。但随着产品成本的降低与体积的微型化,市场上已出现供儿童、老人、病人甚至宠物等特殊群体使用的手表类、寻人仪和儿童玩具型GPS产品。它们可佩带在身上,嵌入老人的拐棍中,甚至植入体内。
与上述产品相比,各种个人消费类GPS电子产品则更加接近人们的生活。有集成了GPS芯片和地理信息系统数字地图的移动通信手机、GPS手持机、GPS手表,甚至GPS相机等,也有基于掌上电脑和笔记本电脑等移动设备的插卡(CF卡式GPS接收机)式、外接(GPS接收机)式等集成产品。目前国内市场上多见的是高明公司、麦哲伦公司、Navman等外国公司品牌的GPS手持机和汽车导航仪等。
3�中国的GPS市场预测
在我国,GPS已经成为地基无线电跟踪与测量系统的一种补充手段,但它在导航和航天测控领域的应用潜力却令人瞩目。例如,我国的导d和航天测控系统用户可根据所需测量精度、目标大小及动态特性的要求,选择导d/航天器,装载GPS转发机或GPS接收及测量系统,以完成各类导d、卫星、飞机和炮d,以及低空长弧段飞行目标等各种飞行体,甚至多个目标的精确跟踪和定位。GPS亦可为一切航天器(卫星、飞船等)精确定轨、定姿,定轨精度可达厘米级;也可为载人航天器实时入轨和返回提供判断信息;还可为航天器的交会对接,提供高精度的相对位置、速度和姿态信息。此外,GPS可为一切用户提供高精度的时间与频率基准。十多年来,GPS在中国的应用发展势头迅猛,已从少数科研单位和军事部门迅速扩展到各个民用领域。伴随着GPS技术应用日趋广泛,国内GPS用户正越来越多。随着我国GPS市场的逐渐开发,市场容量会越来越大。GPS作为一种发展起来的高新产业,必将充满着无限的商机。
值得指出的是,2002年2月,国家计委发出了关于组织实施《卫星导航应用产业化专项的公告》,其目标在于“十五”末期,形成一个市场规模超过百亿元的新产业,实现我国从卫星导航应用大国向应用强国的根本性转变,初步达到卫星导航应用产业化。要在生产制造卫星导航应用基础产品的规模和数量上进入世界前列,接收机主板总产量超过100万套,行业总产值超过100亿元(约占世界市场份额的4%),其中导航运营服务产值超过20亿元。在基础产品上,芯片组与主机板等,从全部进口转变为自主产品达到60%以上,产品出口占国产总量的10%,具有自主知识产权的芯片组、嵌入式软件及专用数据产品的信息服务产品将批量投放市场。通过卫星导航应用示范工程和基础设施的建设,推动卫星导航应用设备及其扩展系统在国民经济诸多部门和人民大众日常生活中的广泛应用,以期产生明显的经济和社会效益。
以GPS导航和地图数据匹配技术为基础的汽车电子导航产品开始进入市场,成为GPS最大的消费市场,从一个侧面也带动了导航电子地图数据生产和经销行业的发展。
据业内专家预测,GPS车辆自主导航系统的市场需求,根据我国未来五年轿车产量估算,从2001年至2006年的起步阶段,出厂原装的市场销量累计将有可能达到37万套。售后选配的市场销量累计将有可能达到12万套。他们还认为:近几年,日、欧、美均采取了谨慎而积极的进军态势,抽出相当的精力和物力,争先恐后地插足我国的市场,对我国汽车市场以及相关联的“GPS车辆自主导航”市场巨大拓展空间抱有期望。这种国内外同行的竞争,无疑来自于方方面面对中国市场需求所作的种种分析。
目前在我国开展导航设备制造和运营的公司虽然数量很多,但普遍规模较小,还没有出现具有垄断地位的公司。这也就意味着各家公司都存在着较大的发展和竞争空间。未来我国卫星导航产业发展的趋势是:在导航产品方面,将由过去单一的导航定位功能设备向能够提供其他功能(授时、信息)或融合进其他设备(个人电子产品)的方向发展;在运营服务方面,将由单一的导航定位服务向联合不同的内容提供商(如数字地理信息提供商等)共同开展综合服务的方向发展。 30096希望对你有帮助!


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/13502085.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-08-20
下一篇 2023-08-20

发表评论

登录后才能评论

评论列表(0条)

保存