服务器是linux 客户端在windows下采用pyqt和 java哪个好

服务器是linux 客户端在windows下采用pyqt和 java哪个好,第1张

windows更适合,如果你只是想搞java开发(比如你是java工作者),那linux是不适合你的,你有一定的linux基础的话,那也可以试试linux。总的来说,linux这两年比较好用的,没有以前那么麻烦了,不过还是没有win好用

本文所演示的的可视化方法

散点图(Scatterplot)

直方图(Histogram)

小提琴图(Violinplot)

特征两两对比图(Pairplot)

安德鲁斯曲线(Andrewscurves)

核密度图(Kerneldensityestimationplot)

平行坐标图(Parallelcoordinates)

Radviz(力矩图?)

热力图(Heatmap)

气泡图(Bubbleplot)

这里主要使用Python一个流行的作图工具:Seabornlibrary,同时Pandas和bubbly辅助。为什么Seaborn比较好?

因为很多时候数据分析,建模前,都要清洗数据,清洗后数据的结果总要有个格式,我知道的最容易使用,最方便输入模型,最好画图的格式叫做\"TidyData\"(WickhamHTidydata[J]JournalofStatisticalSoftware,2014,59(10):1-23)其实很简单,TidyData格式就是:

每条观察(记录)自己占一行

观察(记录)的每个特征自己占一列

举个例子,我们即将作图的数据集IRIS就是TidyData(IRIS(IRIS数据集)_百度百科):

Iris数据集是常用的分类实验数据集,由Fisher,1936收集整理。Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。数据集包含150个数据集,分为3类,每类50个数据,每个数据包含4个属性。可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类。

该数据集包含了5个属性:

SepalLength(花萼长度),单位是cm;

SepalWidth(花萼宽度),单位是cm;

PetalLength(花瓣长度),单位是cm;

PetalWidth(花瓣宽度),单位是cm;

种类:IrisSetosa(山鸢尾)、IrisVersicolour(杂色鸢尾),以及IrisVirginica(维吉尼亚鸢尾)。

IRIS数据

可以看到,每条观察(ID=0,1,2)自己占一行,每个特征(四个部位长/宽度,种类)自己占一列。Seaborn就是为TidyData设计的,所以方便使用。

所以这个数据集有6列,6个特征,很多时候做可视化就是为了更好的了解数据,比如这里就是想看每个种类的花有什么特点,怎么样根据其他特征把花分为三类。我个人的喜好是首先一张图尽量多的包含数据点,展示数据信息,从中发现规律。我们可以利用以下代码完全展示全部维度和数据这里用的bubbly:

三维图,全局观察

Python做出来,其实是一张可以拖动角度,放大缩小的图,拖一拖看各角度视图会发现三类还是分的挺明显的。Github上这个bubbly还是很厉害的,方便。

接下来开始做一些基础的可视化,没有用任何修饰,代码只有最关键的画图部分,可视化作为比赛的一个基础和开端,个人理解做出的图能看就行,美不美无所谓,不美也不扣分。因为

散点图,可以得到相关性等信息,比如基本上SepalLengthCm越大,SepalWidthCm越大

散点图

使用Jointplot,看两个变量的分布,KDE图,同时展示对应的数据点

就像上一篇说的,比赛中的每个环节都至关重要,很有必要看下这些分布直方图,kde图,根据这些来处理异常值等,这里请教,为什么画了直方图还要画KDE??我理解说的都是差不多的东西。

关于KDE:\"由于核密度估计方法不利用有关数据分布的先验知识,对数据分布不附加任何假定,是一种从数据样本本身出发研究数据分布特征的方法,因而,在统计学理论和应用领域均受到高度的重视。\"

无论如何,我们先画直方图,再画KDE

直方图KDE图

这里通过KDE可以说,由于Setosa的KDE与其他两种没有交集,直接可以用Petailength线性区分Setosa与其他两个物种。

Pairplot

箱线图,显示一组数据分散情况的统计图。形状如箱子。主要用于反映原始数据分布的特征,关键的5个黑线是最大值、最小值、中位数和两个四分位数。在判断异常值,处理异常值时候有用。

BoxPlot

小提琴图

Violinplot

这个Andrewscurves很有趣,它是把所有特征组合起来,计算个值,展示该值,可以用来确认这三个物种到底好不好区分,维基百科的说法是“Ifthereisstructureinthedata,itmaybevisibleintheAndrews'curvesofthedata”(Andrewsplot-Wikipedia)

Andrews'curvesradviz

Radviz可视化原理是将一系列多维空间的点通过非线性方法映射到二维空间的可视化技术,是基于圆形平行坐标系的设计思想而提出的多维可视化方法。圆形的m条半径表示m维空间,使用坐标系中的一点代表多为信息对象,其实现原理参照物理学中物体受力平衡定理。多维空间的点映射到二维可视空间的位置由d簧引力分析模型确定。(Radviz可视化原理-CSDN博客),能展示一些数据的可区分规律。

数值是皮尔森相关系数,浅颜色表示相关性高,比如PetalLength(花瓣长度)与PetalWidth(花瓣宽度)相关性096,也就是花瓣长的花,花瓣宽度也大,也就是个大花。

不过,现在做可视化基本上不用python了,具体为什么可以去看我的写的文章,我拿python做了爬虫,BI做了可视化,效果和速度都很好。

finereport

可视化的一大应用就是数据报表,而FineReport可以自由编写整合所需要的报表字段进行报表输出,支持定时刷新和监控邮件提醒,是大部分互联网公司会用到的日常报表平台。

尤其是公司体系内经营报表,我们用的是商业报表工具,就是finereport。推荐他是因为有两个高效率的点:①可以完成从数据库取数(有整合数据功能)—设计报表模板—数据展示的过程。②类似excel做报表,一张模板配合参数查询可以代替几十张报表。

FineBI

简洁明了的数据分析工具,也是我个人最喜欢的可视化工具,优点是零代码可视化、可视化图表丰富,只需要拖拖拽拽就可以完成十分炫酷的可视化效果,拥有数据整合、可视化数据处理、探索性分析、数据挖掘、可视化分析报告等功能,更重要的是个人版免费。

主要优点是可以实现自助式分析,而且学习成本极低,几乎不需要太深奥的编程基础,比起很多国外的工具都比较易用上手,非常适合经常业务人员和运营人员。在综合性方面,FineBI的表现比较突出,不需要编程而且简单易做,能够实现平台展示,比较适合企业用户和个人用户,在数据可视化方面是一个不错的选择;

这些是我见过比较常用的,对数据探索有帮助的可视化方法。

这个非常简单,PyQt就可以轻松实现,一个基于Qt的接口包,可以直接拖拽控件设计UI界面,下面我简单介绍一下这个包的安装和使用,感兴趣的朋友可以自己尝试一下:

1首先,安装PyQt模块,这个直接在cmd窗口输入命令“pipinstallpyqt5”就行,如下,整个模块比较大,下载过程需要等待一会儿,保持联网:

2安装完成后,我们就可以直接打开Qt自带的QtDesigner设计师设计界面了,这里默认会安装到site-packages->PyQt5->Qt->bin目录,打开后的界面如下,可以直接新建对话框等窗口,所有的控件都可以直接拖拽,编辑属性,非常方便:

3这里我简单的设计了一个登录窗口,2个输入框和2个按钮,如下,这里可以直接使用QSS对界面进行美化(设置styleSheet属性即可),类似网页的CSS,如果你有一定的前端基础,那么美化起来会非常容易:

设计完成后,还只是一个ui文件,不是现成的Python代码,还需要借助pyuic5工具(也在bin目录下)才能将ui文件转化为Python代码,切换到ui文件所在目录,输入命令“pyuic5-ologinpyloginui”即可(这里替换成你的ui文件),转化成功后的Python代码如下(部分截图):

还需要在最下面添加一个main函数,创建上面Ui_Form类对象显示窗口即可,如下:

最后点击运行程序,效果如下,和刚才设计的界面效果一模一样:

至此,我们就完成了利用Python的PyQt模块直接拖拽控件来设计UI界面。总的来说,整个过程非常简单,只要你有一定的Python基础,熟悉一下 *** 作过程,很快就能掌握的,当然,还有许多其他UI开发模块,像tkinter,wxPython,Eric6等,也都非常不错,网上也有相关教程和资料,介绍的非常详细,感兴趣的话,可以搜一下,希望以上分享的内容能对你有所帮助吧,也欢迎大家评论、留言进行补充。

首先,如果没有安装python和PyQt软件的请先直接搜索下载并安装。python是一个开源软件,因此都是可以在网上免费下载的,最新版本即可。下载完成后,我们先打开PyQtdesigner。

2

打开后,首先是一个默认的新建窗口界面,在这里我们就选择默认的窗口即可。

3

现在是一个完全空白的窗口。第一步我们要先把所有的设计元素都拖进这个窗口。我们先拖入一个“Label”,就是一个不可编辑的标签。

随后我们再拖入一个可以编辑的“LineEdit”

最后我们拖入最后一个元素:“PushButton”按钮,也就是平时我们所点的确定。

目前我们已经把所有所需要的元素都拖入了新建的窗口。对于每一个元素,我们都可以双击进行属性值的修改,此时我们仅需要双击改个名字即可

此时我们已经完成了一半,接下来需要对动作信号进行 *** 作。我们需要先切入编辑信号的模式

此时把鼠标移动到任意元素,都会发现其变成红色,代表其被选中。

当我们选中pushbutton后,继续拖动鼠标指向上面的lineedit,会发现由pushbutton出现一个箭头指向了lineedit,代表pushbutton的动作会对lineedit进行 *** 作。

随即会d出一个配置连接窗口。左边的是pushbutton的 *** 作,我们选择clicked(),即点击pushbutton。

右边是对lineedit的 *** 作,我们选择clear(),即清楚lineedit中的内容。

最后我们点击确定。

保存完成后,我们在PyQt中的 *** 作就已经完成了。保存的文件名我们命名为test,PyQt生成的设计文件后缀是ui。

分享一下我的做法:
(1)下载Jenkins的Cpptest插件;
(2)服务器上安装C++Test软件;
(3)使用C++Test的GUI生成cpf文件;
(4)通过jenkins的触发功能里添加shell或者windows的bat进行调用(当然也可使用构建工具等)。

Python作为一个设计优秀的程序语言,现在已广泛应用于各种领域,依靠其强大的第三方类库,Python在各个领域都能发挥巨大的作用。
下面我们就来看一下python中常用到的库:
数值计算库:
1 NumPy
支持多维数组与矩阵运算,也针对数组运算提供大量的数学函数库。通常与SciPy和Matplotlib一起使用,支持比Python更多种类的数值类型,其中定义的最重要的对象是称为ndarray的n维数组类型,用于描述相同类型的元素集合,可以使用基于0的索引访问集合中元素。
2 SciPy
在NumPy库的基础上增加了众多的数学、科学及工程计算中常用的库函数,如线性代数、常微分方程数值求解、信号处理、图像处理、稀疏矩阵等,可进行插值处理、信号滤波,以及使用C语言加速计算。
3 Pandas
基于NumPy的一种工具,为解决数据分析任务而生。纳入大量库和一些标准的数据模型,提供高效地 *** 作大型数据集所需的工具及大量的能快速便捷处理数据的函数和方法,为时间序列分析提供很好的支持,提供多种数据结构,如Series、Time-Series、DataFrame和Panel。
数据可视化库:
4 Matplotlib
第一个Python可视化库,有许多别的程序库都是建立在其基础上或者直接调用该库,可以很方便地得到数据的大致信息,功能非常强大,但也非常复杂。
5 Seaborn
利用了Matplotlib,用简洁的代码来制作好看的图表。与Matplotlib最大的区别为默认绘图风格和色彩搭配都具有现代美感。
6 ggplot
基于R的一个作图库ggplot2,同时利用了源于《图像语法》(The Grammar of Graphics)中的概念,允许叠加不同的图层来完成一幅图,并不适用于制作非常个性化的图像,为 *** 作的简洁度而牺牲了图像的复杂度。
7 Bokeh
跟ggplot一样,Bokeh也基于《图形语法》的概念。与ggplot不同之处为它完全基于Python而不是从R处引用。长处在于能用于制作可交互、可直接用于网络的图表。图表可以输出为JSON对象、HTML文档或者可交互的网络应用。
8 Plotly
可以通过Python notebook使用,与Bokeh一样致力于交互图表的制作,但提供在别的库中几乎没有的几种图表类型,如等值线图、树形图和三维图表。
9 pygal
与Bokeh和Plotly一样,提供可直接嵌入网络浏览器的可交互图像。与其他两者的主要区别在于可将图表输出为SVG格式,所有的图表都被封装成方法,且默认的风格也很漂亮,用几行代码就可以很容易地制作出漂亮的图表。
10 geoplotlib
用于制作地图和地理相关数据的工具箱。可用来制作多种地图,比如等值区域图、热度图、点密度图。必须安装Pyglet(一个面向对象编程接口)方可使用。
11 missingno
用图像的方式快速评估数据缺失的情况,可根据数据的完整度对数据进行排序或过滤,或者根据热度图或树状图对数据进行修正。
web开发库:
12 Django
一个高级的Python Web框架,支持快速开发,提供从模板引擎到ORM所需的一切东西,使用该库构建App时,必须遵循Django的方式。
13 Socket
一个套接字通讯底层库,用于在服务器和客户端间建立TCP或UDP连接,通过连接发送请求与响应。
14 Flask
一个基于Werkzeug、Jinja 2的Python轻量级框架(microframework),默认配备Jinja模板引擎,也包含其他模板引擎或ORM供选择,适合用来编写API服务(RESTful rervices)。
15 Twisted
一个使用Python实现的基于事件驱动的网络引擎框架,建立在deferred object之上,一个通过异步架构实现的高性能的引擎,不适用于编写常规的Web Apps,更适用于底层网络。
数据库管理:
16 MySQL-python
又称MySQLdb,是Python连接MySQL最流行的一个驱动,很多框架也基于此库进行开发。只支持Python 2x,且安装时有许多前置条件。由于该库基于C语言开发,在Windows平台上的安装非常不友好,经常出现失败的情况,现在基本不推荐使用,取代品为衍生版本。
17 mysqlclient
完全兼容MySQLdb,同时支持Python 3x,是Django ORM的依赖工具,可使用原生SQL来 *** 作数据库,安装方式与MySQLdb一致。
18 PyMySQL
纯Python实现的驱动,速度比MySQLdb慢,最大的特点为安装方式简洁,同时也兼容MySQL-python。
19 SQLAlchemy
一种既支持原生SQL,又支持ORM的工具。ORM是Python对象与数据库关系表的一种映射关系,可有效提高写代码的速度,同时兼容多种数据库系统,如SQLite、MySQL、PostgreSQL,代价为性能上的一些损失。
自动化运维:
20 jumpsever跳板机
一种由Python编写的开源跳板机(堡垒机)系统,实现了跳板机的基本功能,包含认证、授权和审计,集成了Ansible、批量命令等。
支持WebTerminal Bootstrap编写,界面美观,自动收集硬件信息,支持录像回放、命令搜索、实时监控、批量上传下载等功能,基于SSH协议进行管理,客户端无须安装agent。主要用于解决可视化安全管理,因完全开源,容易再次开发。
21 Magedu分布式监控系统
一种用Python开发的自动化监控系统,可监控常用系统服务、应用、网络设备,可在一台主机上监控多个不同服务,不同服务的监控间隔可以不同,同一个服务在不同主机上的监控间隔、报警阈值可以不同,并提供数据可视化界面。
22 Magedu的CMDB
一种用Python开发的硬件管理系统,包含采集硬件数据、API、页面管理3部分功能,主要用于自动化管理笔记本、路由器等常见设备的日常使用。由服务器的客户端采集硬件数据,将硬件信息发送至API,API负责将获取的数据保存至数据库中,后台管理程序负责对服务器信息进行配置和展示。
23 任务调度系统
一种由Python开发的任务调度系统,主要用于自动化地将一个服务进程分布到其他多个机器的多个进程中,一个服务进程可作为调度者依靠网络通信完成这一工作。
24 Python运维流程系统
一种使用Python语言编写的调度和监控工作流的平台,内部用于创建、监控和调整数据管道。允许工作流开发人员轻松创建、维护和周期性地调度运行工作流,包括了如数据存储、增长分析、Email发送、A/B测试等诸多跨多部门的用例。
GUI编程:
25 Tkinter
一个Python的标准GUI库,可以快速地创建GUI应用程序,可以在大多数的UNIX平台下使用,同样可以应用在Windows和Macintosh系统中,Tkinter 80的后续版本可以实现本地窗口风格,并良好地运行在绝大多数平台中。
26 wxPython
一款开源软件跨平台GUI库wxWidgets的Python封装和Python模块,是Python语言的一套优秀的GUI图形库,允许程序员很方便地创建完整的、功能健全的GUI用户界面。
27 PyQt
一个创建GUI应用程序的工具库,是Python编程语言和Qt的成功融合,可以运行在所有主要 *** 作系统上,包括UNIX、Windows和Mac。PyQt采用双许可证,开发人员可以选择GPL和商业许可,从PyQt的版本4开始,GPL许可证可用于所有支持的平台。
28 PySide
一个跨平台的应用程式框架Qt的Python绑定版本,提供与PyQt类似的功能,并相容API,但与PyQt不同处为其使用LGPL授权。
更多Python知识请关注Python自学网。

下面是Python的应用及岗位。

第一部分:各个领域应用的语言。

大家看这个内容,其实你很明显发现,其实各个语言都有他的用处。我们可以说Python是应用最广的。但是暂时还是不能说它是全能的,因为他也有它的短板,但是对于一般的小公司和小项目而言,是很难得的全能。

现在有个很奇怪的现象,就是大家把Python神话了。Python作为一门语言,确实有他的优势。但是建议大家在学好这个语言的同时,要学第二门语言,这样未来对大家有好的发展。

第二环节:Python工程师在企业里面的定位是什么?

四个重要的定位:验证算法、快速开发、测试运维、数据分析。

1、验证算法:就是对我们公司一些常见设计算法或者公式的验证,公式代码化。

2、快速开发:这个大家应该都比较熟悉,快速开发,就是用成熟框架,更少的代码来开发网站,Python在网站前后台有大量的成熟的框架,如django,flask,bottle,tornado,flask和django的使用较多,国内用Python开发的网站有:知乎、豆瓣、扇贝、腾讯、阿里巴巴;

3、测试运维:用python实现的测试工具及过程,包含服务器端、客户端、web、andriod、client端的自动化测试,自动化性能测试的执行、监控和分析,常用selenium appium等
框架。做运维同学应该清楚,在Linux运维工作中日常 *** 作涵盖了监控,部署,网络配置,日志分析,安全检测 等等许许多多的方面,无所不包。python可以写很多的脚本,把“ *** 作”这个行为做到极致。与此同时,python在服务器管理工具上非常丰富,配置管理(saltstack) 批量执行( fabric, saltstack)  监控(Zenoss, nagios 插件)  虚拟化管理( python-libvirt) 进程管理 (supervisor) 云计算(openstack)  还有大部分系统C库都有python绑定。

4、数据分析:Python有三大神器:numpy,scipy,matplotlib,其中numpy很多底层使用C语言实现的,所以速度很快,用它参加各种数学建模大赛,完全可以替代r语言和MATLAB。spark,Hadoop都开了Python的接口,所以使用Python做大数据的mapreduce也非常简单,加上py对数据库支持都很好,或者类似sqlalchemy的orm也非常强大好用。

在结束这个部分之前,大家有没有一个疑问:为什么爬虫没有中重点讲?

其实这里给大家重点说一下,如果你要学好Python,仅仅停留在爬虫上,这个是很不靠谱的。Python 写爬虫的教程网上一抓一大把,据大家所知很多初学 Python 的人都是使用它编写爬虫程序。小到抓取一个小黄图网站,大到一个互联网公司的商业应用。通过 Python 入门爬虫比较简单易学,不需要在一开始掌握太多太基础太底层的知识就可以很快上手,而且很快可以做出成果,非常适合小白一开始想做出点看得见的东西的成就感。

除了入门,爬虫也被广泛应用到一些需要数据的公司、平台和组织,通过抓取互联网上的公开数据,来实现一些商业价值是非常常见的做法。

当然这些选手的爬虫就要厉害的多了,需要处理包括路由、存储、分布式计算等很多问题,与小白的抓黄图小程序,复杂度差了很多倍。

Python学习路线图,Python 各阶段获得技能说明

Python是一种计算机程序设计语言。是一种动态的、面向对象的脚本语言,最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越来越多被用于独立的、大型项目的开发。

我发的是Python的学习路线图,及Python各阶段技能说明,你可以看一下你想走的路线,然后跟着学习路线图来学习哦!

在我看来,Python 可以做任何事情。无论是从入门级选手到专业级选手都在做的爬虫,还是Web 程序开发、桌面程序开发还是科学计
算、图像处理,Python都可以胜任。
Python为我们提供了非常完善的基础代码库,覆盖了网络、文件、GUI、数据库、文本等大量内容,被形象地称作“内置电池(Batteries
included)”。用Python开发,许多功能不必从零编写,直接使用现成的即可。
除了内置的库外,Python还有大量的第三方库,也就是别人开发的,供你直接使用的东西。当然,如果你开发的代码通过很好的封装,
也可以作为第三方库给别人使用。
许多大型网站就是用Python开发的,例如YouTube、Instagram,还有国内的豆瓣。很多大公司,包括Google、Yahoo等,甚至
NASA(美国航空航天局)都大量地使用Python。
龟叔给Python的定位是“优雅”、“明确”、“简单”,所以Python程序看上去总是简单易懂,初学者学Python,不但入门容易,而且
将来深入下去,可以编写那些非常非常复杂的程序。
总的来说,Python的哲学就是简单优雅,尽量写容易看明白的代码,尽量写少的代码。如果一个资深程序员向你炫耀他写的晦涩难懂、
动不动就几万行的代码,你可以尽情地嘲笑他。
python学习网,免费的python学习网站,欢迎在线学习!


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/13502758.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-08-20
下一篇 2023-08-20

发表评论

登录后才能评论

评论列表(0条)

保存