AB测试本质上是个分离式组间实验,以前进行AB测试的技术成本和资源成本相对较高,但一系列专业的可视化实验工具的出现,AB测试已越来越成为网站优化常用的方法。
现在大多数市场营销自动化软件通常都具有持续运行A/B测试的能力。
AB测试是为Web或App界面或流程制作两个(A/B)或多个(A/B/n)版本,在同一时间维度,分别让组成成分相同(相似)的访客群组(目标人群)随机的访问这些版本,收集各群组的用户体验数据和业务数据,最后分析、评估出最好版本,正式采用。
A/B测试,用于验证用户体验、市场推广等是否正确,而一般的工程测试主要用于验证软硬件是否符合设计预期,因此AB测试与一般的工程测试分属于不同的领域。
应用场景:
1、体验优化
用户体验永远是卖家最关心的事情之一,但随意改动已经完善的落地也是一件很冒险的事情,因此很多卖家会通过AB测试进行决策。常见的是在保证其他条件一致的情况下,针对某一单一的元素进行AB两个版本的设计,并进行测试和数据收集,最终选定数据结果更好的版本。
2、转化率优化
通常影响电商销售转化率的因素有产品标题、描述、图片、表单、定价等,通过测试这些相关因素的影响,不仅可以直接提高销售转化率,长期进行也能提高用户体验。
3、广告优化
广告优化可能是AB测试最常见的应用场景了,同时结果也是最直接的,营销人员可以通过AB测试的方法了解哪个版本的广告更受用户的青睐,哪些步骤怎么做才能更吸引用户。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)