零售行业企业营销数据分析(篇章三:数据分析方法)

零售行业企业营销数据分析(篇章三:数据分析方法),第1张

续上篇,本章进行数据分析方法介绍,供参考。

1、ABC分析   

ABC分析法又称帕雷托分析法,也叫主次因素分析法。

ABC分析通过对一段时间内商品销售情况的分析,可以为商品管理提供依据。评估一个商品的销售情况好坏的指标有以下三种:销售额、销售数、毛利。单一用哪个指标进行分析都不够准确,所以对这三个指标同时进行分析,也就是给这三个指标一定的权重。

例如销售额占x%;销售数占y%;毛利占z%。则综合值=销售额*x%+销售数*y%+毛利*z%;x%+y%+z%=1;分类结果显示A\B或者C。按照所计算的综合值进行排序,观察累计综合值%的变化情况,将累计额百分数为20%以前的这些商品标记为A类,进行重点管理,采取的策略为对相关品的引进;将累计额百分数在20~90%之间的商品标记为B类,进行一般管理;将最后的累计额为10%的商品进行淘汰管理。        

根据货品管理及销售的情况,还可对ABC理论进行一定的变化,这样对零售业的商品管理来说更具有 *** 作性。     

2、比较分析 

比较分析,也称为对比分析。是将同一个指标在同一类对象的不同实体或同一实体在不同维度上进行对比,从而得出有价值的决策信息的一种方法。

同比,也叫同期比,表示和去年同一时间段的比较。 

环比,表示本月和上月的比较。

3、比率分析

同一实体、同一指标,在不同时间的比率。如销售额增长率等。

同一类实体、同一指标,在同一时间的比率。如毛利贡献度、销售额占比等。计算方法是单一实体的指标除以所有实体的指标之和。 

同一实体、不同指标,在同一时间的比率。如毛利率,周转率等。这类比率都有特定的商业含义。

4、20/80原则

20-80分析来源于“二八原则”。意思是在任何一组东西中,最重要的只占其中一小部分,约20%;其余80%尽管是多数,却是次要的。

在零售业中,可以根据同一类实体在同一指标间进行二八分析,从而选出需要重点管理的对象(20%部分)。一般应用比较广泛的分析对象包括:库存商品(按库存金额进行分析)、商品(按销售额或者毛利进行分析)、供应商(按销售额或毛利进行分析)、客户(按销售额或毛利进行分析)。 

5、排序分析 

排序分析方法是在销售数据分析中常用的一种方法,就是将某一指标或某几个指标按照从大到小或者从小到大的顺序排列,这种分析方法的好处在于,可以让分析者清晰地知道最多或最少的实体情况。排序分析一般应用在以下4种情况: 

同一实体、同一指标在不同时间的排序情况,如:某一商品在一个月内的销售额排序情况。

同一类实体、同一指标在同一时间的排序情况,如:小类中所有商品在某一天的销售额排序。 

同一实体、同一时间、多个指标的排序情况(由主次排序因素组成),如:商品先按销售额排序,再按毛利排序。

分组排序分析,如:按照供应商分组,对供应商所供应商品的销售额进行排序。

6、动态分析  

动态分析法是根据在一段时间内的数据变化,通过计算各种动态分析指标来描述现象发展变化的过程和结果,进而揭示现象发展变化的速度、趋势及规律性,并依此对现象的未来发展做出预测的统计分析方法。 

动态分析的指标按其分析应用的情况和计算方法不同可分为两大类,一类是通过将各期发展水平进行平均所形成的指标,包括平均发展水平、平均增长量、平均发展速度和平均增长速度;另一类是通过发展水平之间的对比计算形成的指标,包括增长量、发展速度和增长速度等。 

发展趋势分析方法是动态分析中的一种,它又可分为中短期趋势分析与预测方法、长期趋势分析与预测方法、季节变动分析与预测方法。

7、图形分析  

图形分析的方法是利用图形的直观效果来展现查询结果数据,分析图形包括:饼状图、 柱状图、折线图、区域图等。从图形分析的方法来说,一般有以下三种方法:

对比图示法 通过用图形表现出数据之间的比较关系。 

曲线图示法 一般用曲线图示法来表明某一实体、某个指标的数据发展趋势。

因果图示分析法 用因果图示分析法把影响分析问题的诸多因素用图形表现出来,这样就很容易看出主次要因素。 

8、相关分析  

相关分析是分析两组随机变量间线性密切程度的统计方法,是两变量间线性相关分析的拓展。其方法是通过某一变量,衡量预测另一主要变量,通过衡量这两个随机变量之间“直线关系”的方向与强弱程度来判断这两个变量间的相关性。在零售业中,相关分析可以应用于以下3种情况: 

同一实体、不同指标间进行相关分析,如:供应商的销售额与费用的关系、商品的数量与销售额的相关关系。 

同类实体的同一指标的相关关系,如:供应商相互间彼此销售额的影响关系。 

不同实体、不同指标的相关关系,如:员工数量与企业销售额的关系。 

9、回归分析

回归分析是研究一个变量Y与其它若干变量X之间相关关系的一种数学工具,它是在一组实验或观测数据的基础上,寻找被随机性掩盖了的变量之间的依存关系。通过回归分析,可以把变量间的复杂的、不确定的关系变得简单化和规律化。回归分析一般有线性回归分析、非线性回归分析、多元线形回归分析,一般最常用的就是一元线形回归分析。回归分析作为相关分析的研究方法,在零售业可以对以下情况进行分析: 

点击查看更多

相关阅读:

零售行业企业营销数据分析(篇章二:数据指标)

零售行业企业营销数据分析(篇章一:数据维度)

大数据时代,离不开精准数据营销

住精准的客户,成本会太高,从而造成巨大的资源浪费。从精准度营销来说,客户需求无益是首要的条件。

2、数据类型繁多。网络日志、视频、图片、地理位置信息等等这些构成了大数据的载体,如何在这些数据中找到适合自己的行业需求无益考验着数据采集的分析能力,也在考验着技术开发者的技术水平,要对一个庞大的数据进行详细的细分。

3、价值密度低,商业价值高。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒,在这一两秒之类如何监控获取数据将是一大难题。精准数据要求的是对客户群体进行详细划分从而得到精准的客户需求意向。

4、第四,处理速度快。在大数据中要求高速度完成各项指标!对数据进行处理、并整理成为帮助企业经营决策更积极目的的资讯。

综合以上因素,网络营销在大数据时代和精准营销是密不可分的。但是如何在这个时代中找到一款能代替人工处理的软件至关重要。我这里详细讲下360营销软件的--qq精准客户采集系统。此系统通过对客户数据的分析发现,对qq空间的监控可以获得非常可观的数据量,目前qq空间是在qq流量比中,排行在第一位,占整个qq访问量的55%,所以客户群非常大。

在找好客户群体后就要对客户需求、客户群体细分,首先软件可以实现行业、地区采集,通过对客户的细分,客户逐一排除在需求之外。在此基础上,再次对客户进行精准筛选有效性和时效性,对在线、年龄、性别进行二次筛选。这一系列的环节中所有的 *** 作速度都是通过多线程完成,无论是对数据的采集和空间的监控,都是多线程的监控模式,对空间访客的相应速度可以以秒计算。可以完成一小时在5万以上的采集速度,客户筛选只要轻轻勾选就可以完成。这是一款做网络营销的必备利器,现在在一团做活动,原价699,现在的一团价只需要199,非常的划算.

以上是小编为大家分享的关于大数据时代,离不开精准数据营销的相关内容,更多信息可以关注环球青藤分享更多干货


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/7426931.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-05
下一篇 2023-04-05

发表评论

登录后才能评论

评论列表(0条)

保存