1、利用大数据改进企业广告投放策略
广告圈里一句名言:我知道我的广告浪费了一半,但我不知道浪费了哪一半。当前,越来越多的企业在大数据思维指导下进行广告投放,广告能通过对人群的定向, 投放给准确的目标顾客。特别是互联网广告现在能够做到根据不同的人向其发布最适合其的广告,同时谁看了广告,看了多少次广告,都可以通过数据化的形式来了解、监测, 以使得企业更好地评测广告效果,从而也使得企业的广告投放策略更加有效。
2、基于大数据的精准推广策略
没有目标消费者的精准定位,盲目推广,是很多企业开展营销推广没有效果或者效果甚微的主要原因。大数据时代一个重要的特点是,能够实时全面地收集、分析消费者的相关信息数据,从而根据其不同的偏好、兴趣以及购买习惯等特征有针对性、准确地向他们推销最合适他们的产品或服务。另一方面,可以通过适时、动态地更新、丰富消费者的数据信息, 并利用数据挖掘等技术及早预测消费者下一步或更深层次的需求,进而进一步加大推广力度,最终达到极大增加企业利润的目标。
3、规模个性化产品策略的实施
传统市场营销产品策略主要是,同样包装同等质量的产品卖给所有的该企业客户,或同一个品牌,若干不同包装不同质量层次的产品卖给若干相对大群客户,这使得很多企业的很多产品越来越失去对消费者的吸引力, 越来越不能满足消费者的个性化需求。
近年来,随着科技和互联网的发展,社会的生产制造向生产“智”造转变,同时大数据通过相关性分析,将客户和产品进行有机串联,对用户的产品偏好,客户的关系偏好进行个性化定位,进而反馈给企业的品牌、产品研发部门,并推出与消费者个性相匹配的产品。
4、大数据使得营销渠道效能的潜力得以充分挖掘
以前的市场营销的.渠道大多采取代理制, 或者是购销制, 企业与代理商或经销商之间存在一种利益博弈关系,相互之间的信息常常是不共享的, 也经常会发生利益冲突。在大数据环境下, 企业只有与各方合作者一起建立起大数据营销系统平台,才能集中体现大数据、物联网、云计算、移动电子商务的优势, 从而不断拓展企业营销渠道的外延与内涵。
通过营销渠道各方协调一致增强消费者对产品品牌、服务的良好体验,进而引发顾客更加强烈的购买欲,促进客户与企业品牌的亲合度更加紧密, 提升企业的利润空间。
5、利用企业大数据集成系统制定科学的价格体系策略
现在,很多企业都构建了基于大数据技术的大数据营销平台,实现了海量、不同类型的数据的收集, 并跨越多种不同的系统,比如,不同的渠道平台(网络销售平台,以及实体批发、零售平台)不同的客户需求不同的细分市场以及不同的但可以区隔的市场区域。
这样就可以帮助企业迅速搜集消费者的海量数据,分析洞察和预测消费者的偏好,消费者价格接受度分析各种渠道形式的测试销售数据以及消费者对企业所规划的各种产品组合的价格段的反应。使之能够利用大数据技术以了解客户行为和反馈,深刻理解客户的需求、关注客户行为,进而高效分析信息并做出预测,不断调整产品的功能方向,验证产品的商业价值,制定科学的价格策略。
大数据时代下,如何做好市场营销的推广工作?下面我为大家整理了在大数据时代,做好市场营销推广工作的要点和技巧,欢迎大家阅读参考!
如何做好市场营销
大数据对用户行为与特征分析
显然,只要积累足够的用户数据,才能分析出用户的喜好与购买习惯,甚至做到"比用户更了解用户自己"。这是大数据营销的前提与出发点。过去虽也有"一切以客户为中心"作为口号的企业经营思想,可以想想真的能及时全面地了解客户的需求与所想吗,或许只有大数据时代这个问题的答案才能更加明确。
过大数据支撑精准营销信息推送
过去多少年了,精准营销总在被许多公司提及,但是真正做到的少之又少,反而是垃圾信息泛滥。究其原因,主要是过去名义上的精准营销并不怎么精准,因为其缺少用户特征数据支撑及详细准确的分析。现在的RTB广告的应用则向人们展示了比以前更好的精准性,而其背后靠的是大数据支撑。
大数据让营销活动更能投其所好
如果能在产品生产之前了解潜在用户的主要特征,以及他们对产品的期待,那么你的产品即可投其所好。如《小时代》在预告片投放后,即从微博、微信上通过大数据分析得知其电影的主要观众群为90后女性,因此后续的营销活动则主要针对这些人群展开。
大数据帮助企业筛选重点客户
许多企业家纠结的事是:在企业的用户、好友与粉丝中,哪些是最有价值的用户?有了大数据,或许这一切都可以更加有事实支撑。从用户访问的各种网站可判断其最近关心的东西是否与你的企业相关,从用户在社会化媒体上所发布的'各类内容及与他人互动的内容中,可以找出千丝万缕的信息,利用某种规则关联及综合起来,就可以帮助企业筛选重点的目标用户。
大数据分析消费者的特点
面对日新月异的新媒体,许多企业想通过对粉丝的公开内容和互动记录分析,将粉丝转化为潜在用户,激活社会化资产价值,并对潜在用户进行多个维度的画像,其目的就是更加精准地分析你的产品消费者特点。
大数据可以分析活跃粉丝的互动内容,设定消费者画像各种规则,关联潜在用户与会员数据,关联潜在用户与客服数据,筛选目标群体做精准营销,进而可以使传统客户关系管理结合社会化数据,丰富用户不同维度的标签,并可动态更新消费者生命周期数据,保持信息新鲜有效。
在大数据分析架构下的众多商业管理模式中,UFO模型较为引人关注,这里U代表User experience,即用户体验,其对应的方向是产品设计F代表Freemium,即免费商业模式,其对应的方向是商业模式研究和设计O代表精细化运营,其对应的方向是产品营销运营。研究认为(2014)大数据在以下三个方面起到不同程度的作用。其中,大数据与U(用户体验)及F(免费商业模式)关联度中等,而与O(精细化运营)关联度最高。
今天我们的经营者大数据分析在商业模式设计、商业模式研究、创新商业模式等方面的能力还比较弱,可能到目前在中国还没看到非常成功的利用大数据分析来设计商业模式的案例,也许是因为计算机目前的智慧还没达到设计商业模式的能力高度。
但我们可以通过大数据分析方法进行行业监测以及进行创新监测,从而可以辅助战略规划人员来进行商业模式的设计。
好产品是运营出来的,互联网产品需要不断运营、持续打磨。产品运营的目的是为了扩大用户群、提高用户活跃度、寻找合适商业模式并增加收入。
成功的互联网运营要做到精细化运营,成功的精细化运营需要大数据支撑。大数据和互联网思维在此方面关联度最高。所以,企业在大数据的应用场景上,一定是要优先考虑如何通过大数据进行精细化运营,以驱动更好的运营效率和效果的提升。
基于大数据可以更好的做精细化运营监控、更准确的做用户细分、更准确的进行个性化推荐、更合理的进行营销推广效果的评估以及基于用户生命周期进行相关的营销策略创新。具体在以下几个方面值得关注:
1、通过基于大数据的方法进行用户细分。基于大数据可以找出更好的细分维度,并对用户做更好区隔,以辅助产品运营人员做更加准确的用户细分,并洞察每个细分人群的兴趣爱好和消费倾向,对每类用户分别进行有针对性的策划和运营活动。
2、通过大数据的方法,可以实现对不同通过渠道的效果评估。如果只看一些表面的数据,如广告的点击率,是非常难衡量不同推广渠道的真正效果。如果把用户的渠道行为和后续产品行为(即通过渠道获取的用户在产品上的各种使用行为)进行打通跟踪,在此数据基础上构建渠道质量评估模型,将能够更好的发现渠道的真正质量,或者更直接的,可以发现推广渠道的究竟有多少是虚假的流量。
3、通过利用基于大数据进行有针对性的用户画像,并通过用户画像数据、用户行为和偏爱,结合个性化推荐算法实现根据用户不同的兴趣和需求推荐不同的商品或者产品,通过算法真正的实现"投其所好",以实现推广资源效率和效果最大化。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)