欧拉品牌营销总经理余飞或将调任WEY轿车品牌总经理

欧拉品牌营销总经理余飞或将调任WEY轿车品牌总经理,第1张

10月11日,有消息称,长城汽车欧拉品牌营销总经理余飞将调任WEY品牌任轿车品牌总经理。对此,WEY品牌方面表示,目前暂时不方便透露消息。

今年4月,WEY品牌总经理李瑞峰曾透露,今年长城汽车将会重启轿车项目,首先以WEY品牌试水。全新的平台和技术将带领WEY从15万-20万元价格带延展到15万-30万元的价格区间,“未来将推2款轿车和2款SUV,共布局4款车型。”

资料显示,余飞曾在江铃汽车任职超4年,担任过销售大区经理、皮卡品牌经理等职位。2019年5月,余飞加入长城汽车担任商品企划总监,同年10月,担任欧拉品牌副总经理,随后的公开身份是欧拉品牌营销总经理。

余飞曾为欧拉品牌确立了“全球更爱女人的汽车品牌”的定位,专注女性消费市场。过去半年,欧拉销量不断上涨,今年欧拉累计销量突破7.19万辆,同比增长316.1%。

很明显自CMO更大,他可以管百理整个公司的任何事务,而COO只是管理运营方度面的。

首席营销官全称为Chief Marketing Officer,在中国一些企业里也被称为“营销总监”或“营销总经理”,首席营销官在企业中往往是管理企业营销工作的最高决策者,因此成为众多营销人梦寐以求并为之终身奋斗的最终人生目标。

首席营销官(CMO)已经成为近年来经常谈到的与企业名称相关的话题之一。鉴于新媒体提供的巨大市场潜力和分销渠道的火速增长势头,企业已开始认识到营销在引领企业层的战略方面所具备的无限潜能,及其对财务底线所发挥的举足轻重的作用。

如何实现大数据利润最大利润化

制定合适的价格很重要,再怎么夸大都不过分。价格提高1%意味着经营利润平均可以增长8.7%(当然,假设销量没有损失)。不过我们估计,在许多公司每年制定的成千上万个定价决策中,多达30%未能给出最合适的价格——这意味着收入大量流失。而且考虑到如今海量数据为公司提供了难得的机会,可以做出合理得多的定价决策,这种现状尤其令人不安。对那些能够井然有序地应对复杂的大数据的公司而言,这蕴含着巨大价值。

将数据转化为利润的四个步骤

想制定更合适的价格,关键是完全明白现在可供公司使用的数据。这就需要放大目标,而不是缩小目标。正如综合性能源和化工企业沙索(Sasol)集团副总裁兼营销和销售总经理汤姆·奥布赖恩(Tom O’Brien)提及这种做法时说:“销售团队知道价格,还可能知道销量,但这种做法需要了解更多信息:极其精细的数据,实际上来自每一张发票,按产品、客户和包装分门别类。”

事实上,将大数据成功应用于B2B环境方面最激动人心的一些例子实际上不仅仅着眼于定价,还涉及一家公司的商业引擎的其他方面。比如说,“动态交易评分”(dynamic deal scoring)提供了单笔交易层面的价格指导,还提供了决策逐级上报点、激励机制、绩效评分及更多方面,立足于一系列相似的盈/亏交易。使用较小的、相关的交易样本很有必要,因为与任何一笔交易息息相关的因素会有变化,这导致一系列总体交易成为毫无用处的衡量基准。我们已见过这种方法应用于技术行业,取得了巨大成功。将销售利润率提高了4到8个百分点(相对于同一家公司的对照组)。

想获得足够精细的数据,公司就要做好这四项工作

倾听数据。制定最合理的价格不是牵涉数据的挑战(公司通常已经坐拥庞大的数据宝库),而是牵涉分析的挑战。最出色的B2C公司知道如何解释自己拥有的海量数据,并见机行事,但B2B公司往往一味管理数据,而不是利用数据推动决策。优秀的分析工具可以帮助公司确定经常被忽视的因素(比如更宏观的经济形势、产品偏好以及销售代表的洽谈),揭示什么因素左右针对每个客户群和产品的价格。

提高自动化。人工分析数千种产品太耗费时间和财力。自动化系统可以识别狭小的客户群,确定什么因素左右每个客户群的价值,并且拿来与历史交易数据进行比较。这样一来,公司就可以根据数据,为产品群和客户群制定有针对性的价格。自动化还大大简化了复制和调整分析的工作,因此没必要每次都从头开始分析。

培养技能、树立信心。实施新价格既在运营方面带来了挑战,又在沟通方面带来了挑战。成功的公司非常注重深思熟虑的变革计划,帮助销售队伍了解并接受新的定价方法。公司需要与销售代表们齐心协力,解释为什么实行建议价,这套价格体系是如何运作的,那样销售代表就会非常信任价格,从而竭力说服顾客。同样重要的是制定一套明确清晰的沟通方法,为价格给出一个理由,从而着重突出价值,然后针对具体顾客给出相应的理由。全面的洽谈培训也至关重要,以便让销售代表获得信心和工具,那样与客户面对面交流时,能拿出颇有说服力的理由。最优秀的领导陪同销售代表会见最难拿下的客户,专注于迅速见效,那样销售代表就能树立起信心,积极奉行新的定价方法。林德集团旗下瑞士PanGas AG公司的总经理罗伯特·克里格(Robert Krieger)说:“表明领导层支持这种新的定价方法这个立场,至关重要。为此,我们采取的做法就是领导层与销售代表一起拜见难缠的客户。我们不仅能够帮助销售代表,还能够阐明为什么制定新价格。”

积极管理绩效。想改善绩效管理,公司就需要借助实用的绩效指标支持销售队伍。最大的影响来自确保销售一线对于客户带来的利润了然于胸;销售和营销部门拥有合适的分析技能,得以发现机会,并牢牢抓住机会。还需要将权力下放给销售队伍,让他们自行调整价格,而不是依赖集中式团队。这不仅需要创业理念,还需要在针对特定的客户制定价格策略时有一定的创造力。在改变定价策略和绩效衡量标准的同时,可能还要改变激励机制。

我们已经看到了这一幕:软件、化工、建材和电信等众多行业的公司利用大数据,帮助制定更合理的定价决策,因而收到显著成效。这些公司都有数量众多的库存单位(SKU)和交易,还有一大批高度分散的客户;重新制定价格后,都发现利润率提高了3%到8%,这些价格是在极其精细的产品数据层面制定的。仅举一例,一家欧洲建材公司为几种有所选择的产品制定合适的价格后,利润增幅高达20%。如果公司想制定合适的价格,就应该充分利用大数据,并投入足够的资源来支持销售代表,否则它们会发现自己在为此付出高昂的代价:利润流失。

转载请注明:数据分析 » 如何实现大数据利润最大利润化

量化分析师的Python_python 金融量化分析_python金融大数据分析

量化分析师的Python_python 金融量化分析_python金融大数据分析

一、SciPy概述

前篇已经大致介绍了NumPy,接下来让我们看看SciPy能做些什么。NumPy替我们搞定了向量和矩阵的相关 *** 作,基本上算是一个高级的科学计算器。SciPy基于NumPy提供了更为丰富和高级的功能扩展,在统计、优化、插值、数值积分、时频转换等方面提供了大量的可用函数,基本覆盖了基础科学计算相关的问题。

在量化分析中,运用最广泛的是统计和优化的相关技术,本篇重点介绍SciPy中的统计和优化模块,其他模块在随后系列文章中用到时再做详述。

本篇会涉及到一些矩阵代数,如若感觉不适,可考虑跳过第三部分或者在理解时简单采用一维的标量代替高维的向量。

首先还是导入相关的模块,我们使用的是SciPy里面的统计和优化部分:

In[1]:

import numpy as npimport scipy.stats as statsimport scipy.optimize as opt

二、统计部分2.1 生成随机数

我们从生成随机数开始,这样方便后面的介绍。生成n个随机数可用rv_continuous.rvs(size=n)或rv_discrete.rvs(size=n),其中rv_continuous表示连续型的随机分布,如均匀分布(uniform)、正态分布(norm)、贝塔分布(beta)等;rv_discrete表示离散型的随机分布,如伯努利分布(bernoulli)、几何分布(geom)、泊松分布(poisson)等。我们生成10个[0, 1]区间上的随机数和10个服从参数$a = 4$,$b = 2$的贝塔分布随机数:

In[2]:

rv_unif = stats.uniform.rvs(size=10)print rv_unifrv_beta = stats.beta.rvs(size=10, a=4, b=2)print rv_beta

[ 0.20630272 0.25929204 0.16859206 0.92573462 0.16383319 0.3475617 0.83792048 0.79574153 0.37945051 0.23439682][ 0.71216492 0.85688464 0.70310131 0.3783662 0.69507561 0.78626586 0.54529967 0.4261079 0.26646767 0.8519046 ]

在每个随机分布的生成函数里,都内置了默认的参数,如均匀分布的上下界默认是0和1。可是一旦需要修改这些参数,每次生成随机都要敲这么老长一串有点麻烦,能不能简单点?SciPy里头有一个Freezing的功能,可以提供简便版本的命令。SciPy.stats支持定义出某个具体的分布的对象,我们可以做如下的定义,让beta直接指代具体参数$a = 4$和$b = 2$的贝塔分布。为让结果具有可比性,这里指定了随机数的生成种子,由NumPy提供。

In[3]:

np.random.seed(seed=2015)rv_beta = stats.beta.rvs(size=10, a=4, b=2)print "method 1:"print rv_betanp.random.seed(seed=2015)beta = stats.beta(a=4, b=2)print "method 2:"print beta.rvs(size=10)

method 1:[ 0.43857338 0.9411551 0.75116671 0.92002864 0.62030521 0.56585548 0.41843548 0.5953096 0.88983036 0.94675351]method 2:[ 0.43857338 0.9411551 0.75116671 0.92002864 0.62030521 0.56585548 0.41843548 0.5953096 0.88983036 0.94675351]

2.2 假设检验

好了,现在我们生成一组数据,并查看相关的统计量(相关分布的参数可以在这里查到:http://docs.scipy.org/doc/scipy/reference/stats.html):

In[4]:

norm_dist = stats.norm(loc=0.5, scale=2)n = 200dat = norm_dist.rvs(size=n)print "mean of data is: " + str(np.mean(dat))print "median of data is: " + str(np.median(dat))print "standard deviation of data is: " + str(np.std(dat))

mean of data is: 0.705195138069median of data is: 0.658167882933standard deviation of data is: 2.08967006905

假设这个数据是我们获取到的实际的某些数据,如股票日涨跌幅,我们对数据进行简单的分析。最简单的是检验这一组数据是否服从假设的分布,如正态分布。这个问题是典型的单样本假设检验问题,最为常见的解决方案是采用K-S检验( Kolmogorov-Smirnov test)。单样本K-S检验的原假设是给定的数据来自和原假设分布相同的分布,在SciPy中提供了kstest函数,参数分别是数据、拟检验的分布名称和对应的参数:

In[5]:

mu = np.mean(dat)sigma = np.std(dat)stat_val, p_val = stats.kstest(dat, 'norm', (mu, sigma))print 'KS-statistic D = %6.3f p-value = %6.4f' % (stat_val, p_val)

KS-statistic D = 0.045 p-value = 0.8195

假设检验的$p$-value值很大(在原假设下,$p$-value是服从[0, 1]区间上的均匀分布的随机变量,可参考http://en.wikipedia.org/wiki/P-value ),因此我们接受原假设,即该数据通过了正态性的检验。在正态性的前提下,我们可进一步检验这组数据的均值是不是0。典型的方法是$t$检验($t$-test),其中单样本的$t$检验函数为ttest_1samp:

In[6]:

stat_val, p_val = stats.ttest_1samp(dat, 0)print 'One-sample t-statistic D = %6.3f, p-value = %6.4f' % (stat_val, p_val)

One-sample t-statistic D = 4.761, p-value = 0.0000

我们看到$p$-value$ <0.05$,即给定显著性水平0.05的前提下,我们应拒绝原假设:数据的均值为0。我们再生成一组数据,尝试一下双样本的$t$检验(ttest_ind):

In[7]:

norm_dist2 = stats.norm(loc=-0.2, scale=1.2)dat2 = norm_dist2.rvs(size=n/2)stat_val, p_val = stats.ttest_ind(dat, dat2, equal_var=False)print 'Two-sample t-statistic D = %6.3f, p-value = %6.4f' % (stat_val, p_val)

Two-sample t-statistic D = 5.565, p-value = 0.0000

注意,这里我们生成的第二组数据样本大小、方差和第一组均不相等,在运用$t$检验时需要使用Welch’s $t$-test,即指定ttest_ind中的equal_var=False。我们同样得到了比较小的$p$-value$,在显著性水平0.05的前提下拒绝原假设,即认为两组数据均值不等。

stats还提供其他大量的假设检验函数,如bartlett和levene用于检验方差是否相等;anderson_ksamp用于进行Anderson-Darling的K-样本检验等。

2.3 其他函数

有时需要知道某数值在一个分布中的分位,或者给定了一个分布,求某分位上的数值。这可以通过cdf和ppf函数完成:

In[8]:

g_dist = stats.gamma(a=2)print "quantiles of 2, 4 and 5:"print g_dist.cdf([2, 4, 5])print "Values of 25%, 50% and 90%:"print g_dist.pdf([0.25, 0.5, 0.95])

quantiles of 2, 4 and 5:[ 0.59399415 0.90842181 0.95957232]Values of 25%, 50% and 90%:[ 0.1947002 0.30326533 0.36740397]

对于一个给定的分布,可以用moment很方便的查看分布的矩信息,例如我们查看$N(0, 1)$的六阶原点矩:

In[9]:

stats.norm.moment(6, loc=0, scale=1)

Out[9]:

15.000000000895332

describe函数提供对数据集的统计描述分析,包括数据样本大小,极值,均值,方差,偏度和峰度:

In[10]:

norm_dist = stats.norm(loc=0, scale=1.8)dat = norm_dist.rvs(size=100)info = stats.describe(dat)print "Data size is: " + str(info[0])print "Minimum value is: " + str(info[1][0])print "Maximum value is: " + str(info[1][1])print "Arithmetic mean is: " + str(info[2])print "Unbiased variance is: " + str(info[3])print "Biased skewness is: " + str(info[4])print "Biased kurtosis is: " + str(info[5])

Data size is: 100Minimum value is: -4.12414564687Maximum value is: 4.82577602489Arithmetic mean is: 0.0962913592209Unbiased variance is: 2.88719292463Biased skewness is: -0.00256548794681Biased kurtosis is: -0.317463421177

当我们知道一组数据服从某些分布的时候,可以调用fit函数来得到对应分布参数的极大似然估计(MLE, maximum-likelihood estimation)。以下代码示例了假设数据服从正态分布,用极大似然估计分布参数:

In[11]:

norm_dist = stats.norm(loc=0, scale=1.8)dat = norm_dist.rvs(size=100)mu, sigma = stats.norm.fit(dat)print "MLE of data mean:" + str(mu)print "MLE of data standard deviation:" + str(sigma)

MLE of data mean:-0.249880829912MLE of data standard deviation:1.89195303507

pearsonr和spearmanr可以计算Pearson和Spearman相关系数,这两个相关系数度量了两组数据的相互线性关联程度:

In[12]:

norm_dist = stats.norm()dat1 = norm_dist.rvs(size=100)exp_dist = stats.expon()dat2 = exp_dist.rvs(size=100)cor, pval = stats.pearsonr(dat1, dat2)print "Pearson correlation coefficient: " + str(cor)cor, pval = stats.pearsonr(dat1, dat2)print "Spearman's rank correlation coefficient: " + str(cor)

Pearson correlation coefficient: -0.0262911931014Spearman's rank correlation coefficient: -0.0262911931014

其中的$p$-value表示原假设(两组数据不相关)下,相关系数的显著性。

最后,在分析金融数据中使用频繁的线性回归在SciPy中也有提供,我们来看一个例子:

In[13]:

x = stats.chi2.rvs(3, size=50)y = 2.5 + 1.2 * x + stats.norm.rvs(size=50, loc=0, scale=1.5)slope, intercept, r_value, p_value, std_err = stats.linregress(x, y)print "Slope of fitted model is:" , slopeprint "Intercept of fitted model is:", interceptprint "R-squared:", r_value**2

Slope of fitted model is: 1.44515601191Intercept of fitted model is: 1.91080684516R-squared: 0.798786910173

在前面的链接中,可以查到大部分stat中的函数,本节权作简单介绍,挖掘更多功能的最好方法还是直接读原始的文档。另外,StatsModels(http://statsmodels.sourceforge.net )模块提供了更为专业,更多的统计相关函数。若在SciPy没有满足需求,可以采用StatsModels。

三、优化部分

优化问题在投资中可谓是根本问题,如果手上有众多可选的策略,应如何从中选择一个“最好”的策略进行投资呢?这时就需要用到一些优化技术针对给定的指标进行寻优。随着越来越多金融数据的出现,机器学习逐渐应用在投资领域,在机器学习中,优化也是十分重要的一个部分。以下介绍一些常见的优化方法,虽然例子是人工生成的,不直接应用于实际金融数据,我们希望读者在后面遇到优化问题时,能够从这些简单例子迅速上手解决。

3.1 无约束优化问题

所谓的无约束优化问题指的是一个优化问题的寻优可行集合是目标函数自变量的定义域,即没有外部的限制条件。例如,求解优化问题 [

minimizef(x)=x24.8x+1.2

] 就是一个无约束优化问题,而求解 [

minimizef(x)=x24.8x+1.2subject tox≥0

]则是一个带约束的优化问题。更进一步,我们假设考虑的问题全部是凸优化问题,即目标函数是凸函数,其自变量的可行集是凸集。(详细定义可参考斯坦福大学Stephen Boyd教授的教材convex optimization,下载链接:http://stanford.edu/~boyd/cvxbook )

我们以Rosenbrock函数 [ f(mathbf{x}) = sum{i=1}^{N-1} 100 (x_i – x{i-1}^2)^2 + (1 – x_{i-1})^2 ] 作为寻优的目标函数来简要介绍在SciPy中使用优化模块scipy.optimize。

首先需要定义一下这个Rosenbrock函数:

In[14]:

def rosen(x): """The Rosenbrock function""" return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0)

3.1.1 Nelder-Mead单纯形法

单纯形法是运筹学中介绍的求解线性规划问题的通用方法,这里的Nelder-Mead单纯形法与其并不相同,只是用到单纯形的概念。设定起始点$mathbf{x}_0 = (1.3, 0.7, 0.8, 1.9, 1.2)$,并进行最小化的寻优。这里‘xtol’表示迭代收敛的容忍误差上界:

In[15]:

x_0 = np.array([0.5, 1.6, 1.1, 0.8, 1.2])res = opt.minimize(rosen, x_0, method='nelder-mead', options={'xtol': 1e-8, 'disp': True})print "Result of minimizing Rosenbrock function via Nelder-Mead Simplex algorithm:"print res

Optimization terminated successfully. Current function value: 0.000000 Iterations: 436 Function evaluations: 706Result of minimizing Rosenbrock function via Nelder-Mead Simplex algorithm: status: 0 nfev: 706 success: True fun: 1.6614969876635003e-17 x: array([ 1., 1., 1., 1., 1.]) message: 'Optimization terminated successfully.' nit: 436

Rosenbrock函数的性质比较好,简单的优化方法就可以处理了,还可以在minimize中使用method=’powell’来指定使用Powell’s method。这两种简单的方法并不使用函数的梯度,在略微复杂的情形下收敛速度比较慢,下面让我们来看一下用到函数梯度进行寻优的方法。

3.1.2 Broyden-Fletcher-Goldfarb-Shanno法

Broyden-Fletcher-Goldfarb-Shanno(BFGS)法用到了梯度信息,首先求一下Rosenbrock函数的梯度:

[ begin{split} frac{partial f}{partial xj} &= sum{i=1}^N 200(xi – x{i-1}^2)(delta{i,j} – 2x{i-1}delta{i-1,j}) -2(1 – x{i-1})delta_{i-1,j} &= 200(xj – x{j-1}^2) – 400xj(x{j+1} – x_j^2) – 2(1 – x_j) end{split}] 其中当$i=j$时,$delta_{i,j} = 1$,否则$delta_{i,j} = 0$。

边界的梯度是特例,有如下形式: [ begin{split} frac{partial f}{partial x_0} &= -400x_0(x_1 – x_0^2) – 2(1 – x_0), frac{partial f}{partial x{N-1}} &= 200(x{N-1} – x_{N-2}^2) end{split}]

我们可以如下定义梯度向量的计算函数了:

In[16]:

def rosen_der(x): xm = x[1:-1] xm_m1 = x[:-2] xm_p1 = x[2:] der = np.zeros_like(x) der[1:-1] = 200*(xm-xm_m1**2) - 400*(xm_p1 - xm**2)*xm - 2*(1-xm) der[0] = -400*x[0]*(x[1]-x[0]**2) - 2*(1-x[0]) der[-1] = 200*(x[-1]-x[-2]**2) return der

梯度信息的引入在minimize函数中通过参数jac指定:

In[17]:

res = opt.minimize(rosen, x_0, method='BFGS', jac=rosen_der, options={'disp': True})print "Result of minimizing Rosenbrock function via Broyden-Fletcher-Goldfarb-Shanno algorithm:"print res

Optimization terminated successfully. Current function value: 0.000000 Iterations: 52 Function evaluations: 63 Gradient evaluations: 63Result of minimizing Rosenbrock function via Broyden-Fletcher-Goldfarb-Shanno algorithm: status: 0 success: True njev: 63 nfev: 63 hess_inv: array([[ 0.00726515, 0.01195827, 0.0225785 , 0.04460906, 0.08923649], [ 0.01195827, 0.02417936, 0.04591135, 0.09086889, 0.18165604], [ 0.0225785 , 0.04591135, 0.09208689, 0.18237695, 0.36445491], [ 0.04460906, 0.09086889, 0.18237695, 0.36609277, 0.73152922], [ 0.08923649, 0.18165604, 0.36445491, 0.73152922, 1.46680958]]) fun: 3.179561068096293e-14 x: array([ 1. , 0.99999998, 0.99999996, 0.99999992, 0.99999983]) message: 'Optimization terminated successfully.' jac: array([ 4.47207141e-06, 1.30357917e-06, -1.86454207e-07, -2.00564982e-06, 4.98799446e-07])

3.1.3 牛顿共轭梯度法(Newton-Conjugate-Gradient algorithm)

用到梯度的方法还有牛顿法,牛顿法是收敛速度最快的方法,其缺点在于要求Hessian矩阵(二阶导数矩阵)。牛顿法大致的思路是采用泰勒展开的二阶近似: [ f(mathbf{x}) approx f(mathbf{x}_0) + nabla f(mathbf{x}_0)(mathbf{x} – mathbf{x}_0) + frac{1}{2}(mathbf{x} – mathbf{x}_0)^Tmathbf{H}(mathbf{x}_0)(mathbf{x} – mathbf{x}_0) ] 其中$mathbf{H}(mathbf{x}_0)$表示二阶导数矩阵。若Hessian矩阵是正定的,函数的局部最小值可以通过使上面的二次型的一阶导数等于0来获取,我们有: [ mathbf{x}_{mathrm{opt}} = mathbf{x}_0 – mathbf{H}^{-1}nabla f ]

这里可使用共轭梯度近似Hessian矩阵的逆矩阵。下面给出Rosenbrock函数的Hessian矩阵元素通式:

[ begin{split} H{i,j} = frac{partial^2 f}{partial x_i partial x_j} &= 200(delta{i,j} – 2x{i-1}delta{i-1,j}) – 400xi(delta{i+1,j} – 2xidelta{i,j}) – 400delta{i,j}(x{i+1} – xi^2) + 2delta{i,j}, &= (202 + 1200xi^2 – 400x{i+1}) delta{i,j} – 400x_idelta{i+1,j} – 400x{i-1}delta{i-1,j} end{split}] 其中$i,j in [1, N-2]$。其他边界上的元素通式为: [ begin{split} frac{partial^2 f}{partial x_0^2} &= 1200x_0^2 – 400x_1 + 2, frac{partial^2 f}{partial x_0 partial x_1} = frac{partial^2 f}{partial x_1 partial x_0} &= -400x_0, frac{partial^2 f}{partial x{N-1} partial x{N-2}} = frac{partial^2 f}{partial x{N-2} partial x{N-1}} &= -400x_{N-2}, frac{partial^2 f}{partial x_{N-1}^2} &= 200. end{split}]

例如,当$N=5$时的Hessian矩阵为:

[ mathbf{H} =

[1200x20400x1+2400x0000400x0202+1200x21400x2400x1000400x1202+1200x22400x3400x2000400x2202+1200x23400x4400x3000400x3200]

]为使用牛顿共轭梯度法,我们需要提供一个计算Hessian矩阵的函数:

In[18]:

def rosen_hess(x): x = np.asarray(x) H = np.diag(-400*x[:-1],1) - np.diag(400*x[:-1],-1) diagonal = np.zeros_like(x) diagonal[0] = 1200*x[0]**2-400*x[1]+2 diagonal[-1] = 200 diagonal[1:-1] = 202 + 1200*x[1:-1]**2 - 400*x[2:] H = H + np.diag(diagonal) return H

In[19]:

res = opt.minimize(rosen, x_0, method='Newton-CG', jac=rosen_der, hess=rosen_hess, options={'xtol': 1e-8, 'disp': True})print "Result of minimizing Rosenbrock function via Newton-Conjugate-Gradient algorithm (Hessian):"print res

Optimization terminated successfully. Current function value: 0.000000 Iterations: 20 Function evaluations: 22 Gradient evaluations: 41 Hessian evaluations: 20Result of minimizing Rosenbrock function via Newton-Conjugate-Gradient algorithm (Hessian): status: 0 success: True njev: 41 nfev: 22 fun: 1.47606641102778e-19 x: array([ 1., 1., 1., 1., 1.]) message: 'Optimization terminated successfully.' nhev: 20 jac: array([ -3.62847530e-11, 2.68148992e-09, 1.16637362e-08, 4.81693414e-08, -2.76999090e-08])

对于一些大型的优化问题,Hessian矩阵将异常大,牛顿共轭梯度法用到的仅是Hessian矩阵和一个任意向量的乘积,为此,用户可以提供两个向量,一个是Hessian矩阵和一个任意向量$mathbf{p}$的乘积,另一个是向量$mathbf{p}$,这就减少了存储的开销。记向量$mathbf{p} = (p_1, ldots, p_{N-1})$,可有

[ mathbf{H(x)p} = begin{bmatrix} (1200x0^2 – 400x_1 + 2)p_0 -400x_0p_1 vdots -400x{i-1}p{i-1} + (202 + 1200x_i^2 – 400x{i+1})pi – 400x_ip{i+1} vdots -400x{N-2}p{N-2} + 200p_{N-1} end{bmatrix} ]

我们定义如下函数并使用牛顿共轭梯度方法寻优:

In[20]:

def rosen_hess_p(x, p): x = np.asarray(x) Hp = np.zeros_like(x) Hp[0] = (1200*x[0]**2 - 400*x[1] + 2)*p[0] - 400*x[0]*p[1] Hp[1:-1] = -400*x[:-2]*p[:-2]+(202+1200*x[1:-1]**2-400*x[2:])*p[1:-1] -400*x[1:-1]*p[2:] Hp[-1] = -400*x[-2]*p[-2] + 200*p[-1] return Hpres = opt.minimize(rosen, x_0, method='Newton-CG', jac=rosen_der, hessp=rosen_hess_p, options={'xtol': 1e-8, 'disp': True})print "Result of minimizing Rosenbrock function via Newton-Conjugate-Gradient algorithm (Hessian times arbitrary vector):"print res

Optimization terminated successfully. Current function value: 0.000000 Iterations: 20 Function evaluations: 22 Gradient evaluations: 41 Hessian evaluations: 58Result of minimizing Rosenbrock function via Newton-Conjugate-Gradient algorithm (Hessian times arbitrary vector): status: 0

转载请注明:数据分析 » 量化分析师的Python_python 金融量化分析_python金融大数据分析


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/8359743.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-15
下一篇 2023-04-15

发表评论

登录后才能评论

评论列表(0条)

保存