如何利用数据挖掘算法进行精准营销?

如何利用数据挖掘算法进行精准营销?,第1张

数据挖掘,已成为各大公司的必备职位,针对顾客行为和购买历史等进行数据整合、分析挖掘,达到精准定位营销的目的。但数据挖掘并不是简单的数据采编,更多需要一些算法技巧,比如我们做数据挖掘会采用分类算法、聚类算法、关联规则等。下面 大圣众包威客平台 我就这三种算法详细介绍下,如何实现精准营销。

分类算法:

我们做电商平台,用户留存是很重要的一部分,但顾客流失走向我们是无法控制的,只能通过预测,这时就需要运用到分类模型。分类算法属于预测性模型,根据过去数据、分析来预测将来一段时间的行为过程。分类学习方法所使用的数据集称为训练集,训练集中每一个个体都有明确的类别,通过训练集中的数据表现出来的特征,为每一个类找到一种准确的描述或者模型。其优点是容易理解、预测准确度高。分类算法有logistic回归,神经网络、贝叶斯分类器、SVM等算法。

分类算法实际应用案例:

比如高尔夫球场,这个跟天气情况关系密切,因为前期的数据分析,得出天气是否晴朗,气温如何,湿度如何、风力如何都会影响到打高尔夫球场的人,因此,作为一个高尔夫球场的运营人员便可以根据分类模型,去构建决策树,不同的天气因素,决定是否开放等。

聚类算法:

说完分类算法,谈谈聚类,聚类算法主要是按照样本、数据自身的属性去归类,用数学方法根据相似性或差异性指标,定量确定样本亲疏关系。聚类有Kmeas,Two-step

聚类算法实际应用案例:

电商公司想要新进一批高端服装,但究竟进什么款式等,这需要根据消费群体特征来分类,首先需要从上一年的数据,查看顾客购买行为、消费额、购买时间等通过聚类方法进行分类,找出每类群体的特征,然后根据这类群体进行相应的推送,而不是广撒网模式。

关联规则:

关联分析是从大量数据中发现样本之间有趣的关联和关系,从而为用户推送。关联分析主要用“支持度”(support)和“置性度”(confidence)两个概念衡量事物之间的关联规则。关联规则A->B的支持度support=P(AB),指的是事件A和事件B同时发生的概率。置信度confidence=P(B|A)=P(AB)/P(A),指的是发生事件A的基础上发生事件B的概率。这有点像我们高中的概率学。

我们常见的电商平台,“为你推荐”、“购买该产品的用户还购买了”等都属于关联分析,其依据就是通过分析之前购买产品的顾客的购物篮分析,分析顾客的购买习惯,可以帮助零售商制定营销策略。

数据挖掘不是简单的数据整合,采集,更多是根据用户的行为习惯,深入分析用户的意图,了解背后的动机,才能给予企业决策,更好服务营销。

原文地址: http://www.dashengzb.cn/articles/a-146.html

随着大数据发展越来越好,数据挖掘成为了未来发展的一大趋势。数据挖掘主要是使用未来趋势和行为作出前摄的、基础知识的决策。下面云南电脑培训为大家介绍数据挖掘具备的功能。

一、自动预测趋势和行为

数据挖掘在大型数据库中自动查询预测信息,在很早之前,大量的手工分析问题都可以快速和直接的从数据本身得到结论。

二、关联分析

数据关联是数据中能够发现的一种重要知识。如果在两个和多个变值之间存在一定的规律,这就是所谓的相关性。关联可以分为简单相关、时间相关和因果相关。其中云南IT培训发现关联分析的目的主要是找出数据库中隐藏的网络。数据库中关联的数据有时是未知的、有时是已知的、有时是不确定的,所以关联分析生成的规则才具有可信度。

三、聚类

数据库中的记录能够分为一系类有意义的子集,即聚类。聚类能够提高人们对客观现实的理解,是概念记述和偏差分析的前提。昆明IT培训发现聚类主要包括传统的模式识别方法和数学分类法。

四、概念描述

概念描述是对目标类别的内容的描述,以及此类目的相关特征的摘要。概念描述分为特征性描述和区别性描述,描述了不同物体之间的差异。昆明电脑培训认为制定一类特征说明只会影响所有物体的共同要素。进行区别描述的方法还是很多种,如决策树方法、遗传学方法等。

数据挖掘技术应用于企业市场营销,是以市场营销学生物市场细分及消费者行为分析原理为基础,通过加工、处理、分析涉及消费者消费行为的大量信息,确定特定消费群体或个体的兴趣、消费习惯、消费倾向和消费需求,以及相关环境发生变化可能性几率,就可以推断出相应消费群体或个体下一步的消费行为,然后以此为基础,对所识别出来的消费群体进行特定内容定向营销,这与传统的不区分消费者对象特征的大规模营销手段相比,不仅大大节省了营销成本,提高了营销效果,而且能防范营销风险,从而为企业带来更多的利润。在市场营销中利用数据挖掘技术可以解决的问题有:识别有价值的顾客及他们的性格特征,预测消费者的购买行为,顾客流失分析,评估广告效果,评估及划分信用风险,评估潜在消费者交叉销售和向上销售直接目标销售,欺诈发现关于环境变化的状态参数及可能性概率。

想要学习了解更多数据挖掘的信息,推荐CDA数据分析师课程。CDA认证考试由经管之家主办,该课程要求学生根据业务场景来综合判断,洞察数据规律,使用正确的数据清洗与特征工程方法,综合使用统计分析方法、统计模型、运筹学、机器学习、文本挖掘算法,而非单一的机器学习算法。点击预约免费试听课。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/8423341.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-16
下一篇 2023-04-16

发表评论

登录后才能评论

评论列表(0条)

保存