大数据分析时代对市场营销的影响研究

大数据分析时代对市场营销的影响研究,第1张

下面我为你准备的关于市场营销的论文,欢迎阅读借鉴,希望对大家有帮助。

一、数据分析时代演变历程

(一)数据1.0时代

数据分析出现在新的计算技术实现以后,分析1.0时代又称为商业智能时代。它通过客观分析和深入理解商业现象,取缔在决策中仅凭直觉和过时的市场调研报告,帮助管理者理性化和最大化依据事实作出决策。首次在计算机的帮助下将生产、客户交互、市场等数据录入数据库并且整合分析。但是由于发展的局限性对数据的使用更多的是准备数据,很少时间用在分析数据上。

(二)数据2.0时代

2.0时代开始于2005年,与分析1.0要求的公司能力不同,新时达要求数量分析师具备超强的分析数据能力,数据也不是只来源于公司内部,更多的来自公司外部、互联网、传感器和各种公开发布的数据。比如领英公司,充分运用数据分析抢占先机,开发出令人印象深刻的数据服务。

(三)数据3.0时代

又称为富化数据的产品时代。分析3.0时代来临的标准是各行业大公司纷纷介入。公司可以很好的分析数据,指导合适的商业决策。但是必须承认,随着数据的越来越大,更新速度越来越快,在带来发展机遇的同时,也带来诸多挑战。如何商业化地利用这次变革是亟待面对的课题。

二、大数据营销的本质

随着顾客主导逻辑时代的到来以及互联网电商等多渠道购物方式的出现,顾客角色和需求发生了转变,世界正在被感知化、互联化和智能化。大数据时代的到来,个人的行为不仅能够被量化搜集、预测,而且顾客的个人观点很可能改变商业世界和社会的运行。由此,一个个性化顾客主导商业需求的时代已然到来,大数据冲击下,市场营销引领的企业变革初见端倪。

(一)大数据时代消费者成为市场营销的主宰者

传统的市场营销过程是通过市场调研,采集目前市场的信息帮助企业研发、生产、营销和推广。但是在大数据以及社会化媒体盛行的今天,这种营销模式便黯然失色。今天的消费者已然成为了市场营销的主宰者,他们会主动搜寻商品信息,货比三家,严格筛选。他们由之前的注重使用价值到更加注重消费整个过程中的体验价值和情境价值。甚至企业品牌形象的塑造也不再是企业单一宣传,虚拟社区以及购物网站等的口碑开始影响消费者的购买行为。更有甚者,消费者通过在社交媒体等渠道表达个人的需求已经成为影响企业产品设计、研发、生产和销售的重要因素。

(二)大数据时代企业精准营销成为可能

在大数据时代下,技术的发展大大超过了企业的想象。搜集非结构化的信息已经成为一种可能,大数据不单单仅能了解细分市场的可能,更通过真正个性化洞察精确到每个顾客。通过数据的挖掘和深入分析,企业可以掌握有价值的信息帮助企业发现顾客思维模式、消费行为模式。尤其在今天顾客为了彰显个性,有着独特的消费倾向。相对于忠诚于某个品牌,顾客更忠诚与给自己的定位。如果企业的品牌不能最大化地实现客户价值,那么即使是再惠顾也难以保证顾客的持续性。并且,企业不能奢望对顾客进行归类,因为每个顾客的需求都有差别。正是如此,大数据分析才能更好地把握顾客的消费行为和偏好,为企业精准营销出谋划策。

(三)大数据时代企业营销理念――“充分以顾客为中心创造价值”

传统的营销和战略的观点认为,大规模生产意味着标准化生产方式,无个性化可言。定制化生产意味着个性化生产,但是只是小规模定制。说到底,大规模生产与定制化无法结合。但是在今天,大数据分析的营销和销售解决的是大规模生产和顾客个性化需求之间的矛盾。使大企业拥有传统小便利店的一对一顾客关系管理,以即时工具和个性化推荐使得大企业实现与顾客的实时沟通等。

三、基于数据营销案例研究――京东

京东是最大的自营式电商企业。其中的京东商城,涵盖服装、化妆品、日用品、生鲜、电脑数码等多个品类。在整个手机零售商行业里,京东无论是在销售额还是销售量都占到市场份额一半的规模。之所以占据这样的优势地位,得益于大数据的应用,即京东的JD Phone的计划。

JD Phone计划是依据京东的大数据和综合服务的能力,以用户为中心整合产业链的优质资源并联合厂商打造用户期待的产品和服务体验。京东在销售的过程中,通过对大数据的分析,内部研究出一种称为产品画像的模型。这个模型通过综合在京东网站购物消费者的信息,例如:年龄、性别、喜好等类别的信息,然后进行深入分析。根据分析结果结合不同的消费者便有诸如线上的程序化购买、精准的点击等营销手段,有效的帮助京东实现精准的营销推送。不仅如此,通过对于后续用户购物完成的售后数据分析,精确的分析商品的不足之处或者消费者的直接需求。数据3.0时代的一个特征便是企业不在单纯的在企业内部分析数据,而是共享实现价值共创。所以,京东把这些数据用于与上游供应商进行定期的交流,间接促进生产厂商与消费者沟通,了解市场的需求,指导下一次产品的市场定位。总的来说,这个计划是通过京东销售和售后环节的大数据分析,一方面指导自身精准营销,另一方面,影响供应商产品定位和企业规划,最终为消费者提供满足他们需求的个性化产品。

四、大数据营销的策略分析

(一)数据分析要树立以人为本的思维

“以人为本”体现在两个方面,一方面是数据分析以客户为本,切实分析客户的需求,用数据分析指导下一次的产品设计、生产和市场营销。另一方面,以人为本体现在对用户数据的保密性和合理化应用。切实维护好大数据和互联网背景下隐私保护的问题,使得信息技术良性发展。

(二)正确处理海量数据与核心数据的矛盾

大数据具有数据量大、类型繁多、价值密度低和速度快时效高的特点。所以在众多海量的数据中,只有反映消费者行为和市场需求的信息才是企业所需要的。不必要的数据分析只会影响企业做出正确的决策。鉴于此,首先企业需要明确核心数据的标准其次企业要及时进行核心数据的归档最后要有专业的数据分析专业队数据进行分析,得出科学合理的结果以指导实践。

(三)整合价值链以共享数据的方式实现价值创造

大数据开启企业精准营销时代

大数据营销的发展为在技术、数据和应用领域均具备领先优势的企业提供了广阔发展空间。10月27日,国内领先的大数据公司百分点集团发布了面向企业客户和广告代理商的大数据营销平台产品“百分点营销管家”(BMM),该产品旨在突破国内市场精准营销的瓶颈,实现基于大数据背景下的营销管理,打造全数据生命周期的营销管理平台和服务。

据了解,“营销管家”基于百分点独特的技术、数据和模型优势,帮助企业挖掘一方数据价值,打通三方数据,获取更全面的消费者洞察。同时,“营销管家”对接多家业内技术领先的渠道合作伙伴及数据提供商,整合展示广告、搜索广告、电子邮件、短信平台等多种媒介资源,为企业客户提供一站式营销解决方案。

百分点创始人、董事长苏萌表示,“营销管家”让精准营销不仅拥有了雷达来探测市场,也拥有了卫星来精准定位。“营销管家”是百分点坚持“大数据赋能者”定位基础上的又一创新成果,其价值在于为企业客户提供精准的受众人群、灵活的投放规则,丰富的渠道选择。通过跨渠道、跨屏的营销组合,更好的接触到目标群体,达到精准营销的效果。

在多屏时代和移动互联网时代,消费者数据高度碎片化,企业难以全面触及和管理。另一方面,企业一方数据往往较为局限,亟须第三方数据补充。百分点产品副总裁张一帆指出,精准营销是结合大数据技术最广泛的一个应用领域。基于整合三方数据合作伙伴及渠道资源,“营销管家”将数据驱动智能营销的技术能力赋予企业客户和服务商,让他们更好的适应大数据时代的营销模式。

璧合科技创始人赵征表示,中国互联网广告发展已经经历了几个不同阶段,当前从上到下整个行业内越来越细分化,并且产业链形成之后,在这个中间任何一部分,包括DSP(需求方平台)、DMP(数据管理平台)、SSP(供应商平台)等都有产业极度细分化的趋势,但也不代表现在已经是终点。相信再过一两年会有更多公司出现,整个产业会越来越细分。

在北大光华管理学院市场营销系教授沈俏蔚看来,大数据营销、精准营销,是要能够非常准确、及时判断消费者偏好,并且能够把消费者所关心的产品或者广告信息,以非常有效的手段传递到他那里。这里存在两个难点,一是数据和技术的问题,信息搜集不仅仅关注过去的购买行为,还希望得到完整的消费者画像,这就需要连接很多数据,包括购买行为、在网上搜索行为、甚至个人微博及朋友圈发布的信息。把这些数据源有效整合起来的时候,本身就是一个挑战。二是模型需要更多改进和更广泛的推广。

以上是小编为大家分享的关于大数据开启企业精准营销时代的相关内容,更多信息可以关注环球青藤分享更多干货

大数据时代-如何才能把营销数据落到实处

在大多数公司,营销人员负责评估市场竞争。因此,将近60%的信息专员都会向营销部门报告分析数据,然而大多数营销人员并不能战略性地运用这些竞争分析,只是不断收集而已。换句话说,他们只是对现在进行“快照”,而无法前瞻。

很多分析师都会埋怨:他们的营销负责人太重视竞争对手的各项数据了。

大数据时代的崛起似乎加剧了这一趋势。从全球著名的市场调研公司Nielsen到美国咨询公司Gartner ,再到市场研究公司IMS,这些专业大数据提供者紧盯市场动向,随时描绘市场图景。众所周知,财富500强公司的营销人员非常善于分析竞争对手的市场份额数据,甚至能精确到小数点第二位。

毫无疑问,大数据以及分析学正在改变营销面貌。但是并没有让营销变得更富有战略性,不过是更精确了而已。之前只是用同一个广告到处轰炸式宣传,而如今大数据使得营销人员可以根据用户的个人偏好和特定消费媒介有针对性地向不同客户群体投放不同广告。其对当下营销表现的改变,就好像导d对当下空战的改变一样,但正如军事专家所言,空袭并不能赢得战争。

时至今日,很多营销人员已经拥有很多前所未有的科技工具作为“武器”,又拥有极先进的数据“侦查”方法。但他们似乎经常缺乏有效的“战略计划”,缺乏根据对方行动评估未来局势并进行反击的能力。

然而,有为数不多的个别公司却可以利用这些数据,从竞争情报分析人员那里得到更多战略价值。

集中精力关注战略框架

在总部位于比利时的中型制药企业UCB,作为战略营销实践的一部分,Heresh Rezavandi和他的经理Michelle Maddix-Sovero正在领导一个年轻的战略情报部门。Rezavandi的战略预警办法是从公司现有战略开始入手的,借鉴竞争战略之父Michael Porter的战略框架,考虑到替代品、买家和供应商,将纷纭复杂的竞争信息和未来预测综合分析。这能够帮助团队保持努力的方向。

加入UCB之前,Rezavandi在一家制药咨询公司工作,在那里,他目睹了管理者根本不知道究竟需要什么,只会说:“拣重要的通通报上来。” Rezavandi表示:“在加入UCB之后,我很快意识到,这里和咨询公司不同,信息收集不过是一切的开端。”

让高管层参与进来

在总部位于美国俄亥俄州辛辛那提市,提供高度专业化商业服务的制服企业Cintas,拥有3万名员工。其中1600名经理和董事都在一个返情报的协作区内,这1600人来自全公司各个级别、各个地区以及各个业务部门,公司最高领导层也都在这个协作区里。负责该公司竞争情报部门的主管Troy Pfeffer表示:“你想要情报,就要自己参与情报创建。”

Troy特别推崇这一方式。他表示:“询问情报的人,通常对该情报已经有了相关了解。忽略这一情报来源会降低情报质量。而通过让询问情报的人加入该情报的创建,你将大大提升采取行动的可能性,深挖这个组织的情报文化。”

洞察先机

2014年,英国罗得岛州东部城市沃里克一家私营科技服务公司Atrion有了麻烦。这家公司创建于1987年,一直以来,其核心业务都是IT基础设施技术的销售、安装和后续支持,其收入的80%都来源于此。但是,随着云计算渐渐成长起来,Atrion的客户突然发现有了更便宜的选择。

幸运的是,云计算的迅速崛起并没有让Atrion措手不及。2012年,Atrion的情报分析人员鉴定指出,云计算将成为首号战略威胁。Dave Ramsden和他的团队立刻开始跟踪相关数据,不放过任何哪怕最微弱的危险信号。随着云计算的采用率开始增长,他们拉响了警报。

于是在2014年,Ramsden的团队开始建立五年计划,根据历史表现给出预期增长,并在商业基础设施方面将当前增长和预期下降的可能相结合,给出备选方案。Ramsden还利用当时公开可见的情报信息,描绘出了战略地图,分析说明其它科技服务公司在不断变化的市场中做出的战略决策。这促进团队提出许多批判性的问题:Atrion究竟想成为什么?继续紧抓硬件这一块吗?还是成为云服务公司呢?又或者演变成一家专业服务公司?

公司决定提高对服务销售的关注,多多咨询客户,用心理解客户所需的业务。同时公司开始创新服务产品,使得投资组合更加多样化。截至2015年6月的财政年度,Atrion整体总收入增长了约19%,而服务收入增长了44%。

形成假设——然后测试

Man-Wai Chow在化学公司Eastman领导战略情报工作,他的情报流程是由假设驱动的。这些关于主要产业力量的假设,让其团队得以提供可行的商务见解。假设通常始于企业拥有的某些信念,这种信念或对或错。作为战略情报领导,他的任务就是打磨这些信念,对其进行测试。

Man-Wei的团队发展了这些假设(即观点),然后确定具体的路标或者说是先行指标,努力去验证并尝试这些假设。这里不得不再次提到Michael Porter的战略模型,它往往会帮助我们获得一个更清晰的观点。Chow 表示:“我们经常会提出‘假设’,防止自己鼠目寸光。我们和业务部门也会紧密合作,深入洞察,提高决策质量。”

很多公司仍认为营销人员只需要负责执行战略,而不需要参与战略的制定。但营销人员远不止销售工作而已,他们还可以促进战略和业务的发展。

但营销人员都知道,营销已经不再只仅仅是做做广告,发发新闻稿了。那个营销人员只需要简单设计下优惠券就OK了的时代已经过去。今天的市场营销包括数据科学和分析部门,需要收集和分析大量交易型的(仍然是主要形式)和字符类型的(挖掘社交网络)用户数据,来设计“最优客户体验”。最新科技工具可以作为辅助,但是无法代替精明的战略思想家。正如Man-Wai Chow所说:“算法无法超越人类智慧。”

以上是小编为大家分享的关于大数据时代-如何才能把营销数据落到实处的相关内容,更多信息可以关注环球青藤分享更多干货


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/8759389.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-20
下一篇 2023-04-20

发表评论

登录后才能评论

评论列表(0条)

保存