国内大数据主力阵营:
1.阿里巴巴
阿里巴巴拥有交易数据和信用数据,更多是在搭建数据的流通、收集和分享的底层架构。
2.华为华为云服务
整合了高性能的计算和存储能力,为大数据的挖掘和分析提供专业稳定的IT基础设施平台,近来华为大数据存储实现了统一管理40PB文件系统
3.百度
百度的优势体现在海量的数据、沉淀十多年的用户行为数据、自然语言处理能力和深度学习领域的前沿研究。近来百度正式发布大数据引擎,将在政府、医疗、金融、零售、教育等传统领域率先开展对外合作。
4.浪潮
浪潮互联网大数据采集中心已经采集超过2PB数据,并已建立5大类数据分类处理算法。近日成功发布海量存储系统的最新代表产品AS130000。
5.腾讯
腾讯拥有用户关系数据和基于此产生的社交数据,腾讯的思路主要是用数据改进产品,注重QZONE、微信、电商等产品的后端数据打通。
国内做大数据的公司依旧分为两类:一类是现在已经有获取大数据能力的公司,如百度、腾讯、阿里巴巴等互联网巨头以及华为、浪潮、中兴等国内领军企业,涵盖了数据采集,数据存储,数据分析,数据可视化以及数据安全等领域;另一类则是初创的大数据公司,他们依赖于大数据工具,针对市场需求,为市场带来创新方案并推动技术发展。其中大部分的大数据应用还是需要第三方公司提供服务。值得一提的是,在初创公司当中探码科技是一匹黑马,擅长美国互联网前沿技术,崇尚硅谷创业模式,自主研发有核心技术,曾开发并维护美国拥有上千万用户级的网站,并在网络数据采集,大数据解析方面具有突出的能力,也将在国内推出一系列面向政务、企业的创新型大数据研究项目与合作,为各大企业提供高端信息技术咨询服务。
国内大数据主力阵营
1.阿里巴巴
阿里巴巴拥有交易数据和信用数据,更多是在搭建数据的流通、收集和分享的底层架构。
2.华为华为云服务
整合了高性能的计算和存储能力,为大数据的挖掘和分析提供专业稳定的IT基础设施平台,近来华为大数据存储实现了统一管理40PB文件系统
3.百度
百度的优势体现在海量的数据、沉淀十多年的用户行为数据、自然语言处理能力和深度学习领域的前沿研究。近来百度正式发布大数据引擎,将在政府、医疗、金融、零售、教育等传统领域率先开展对外合作。
4.浪潮
浪潮互联网大数据采集中心已经采集超过2PB数据,并已建立5大类数据分类处理算法。近日成功发布海量存储系统的最新代表产品AS130000。
5.腾讯
腾讯拥有用户关系数据和基于此产生的社交数据,腾讯的思路主要是用数据改进产品,注重QZONE、微信、电商等产品的后端数据打通。
6. 探码科技 探码科技自主研发的DYSON只能分析系统,可以完整的实现大数据的采集、分析、处理。一直做的国外项目美国最大的律师平台、医生平台和酒店、机票预订平台的数据采集、分析、处理。将在国内推出一系列面向政务、企业的创新型大数据研究项目与合作,为各大企业提供高端信息技术咨询服务。
7.中兴通讯中兴通讯推出的“聚焦ICT服务的高效数据中心整体服务解决方案”,可帮助运营商有效解决大数据时代建设IDC面临的大部分问题,提升运营商ICT融合服务能力。
8.神州融神州融整合了国内权威的第三方征信机构和电商平台等信贷应用场景的征信大数据,通过覆盖信贷全生命周期管理的顶尖风控技术,为微金融机构提供大数据驱动的信贷风控决策服务。
9.中科曙光
中科曙光XData大数据一体机可实现任务自动分解,并在多数据模块上并行执行,全面提高了复杂查询条件下的效率。
10.华胜天成
胜天成自主研发的大数据产品“i维数据”,颇具创新,近期又与IBM达成战略合作关系,涵盖Linux on Power市场、智慧城市、存储业务、管理服务、咨询与应用管理服务。
11.神州数码“神州数码”启动了“智慧城市”战略布局,先后推出了市民融合服务平台、自助终端服务平台等产品,并在佛山、武汉等“智慧城市”建设中实践运用。
12.用友用友在商业分析、大数据处理等领域进行研发,先后推出了用友BQ、用友AE等产品。
13.东软东软大数据战略以医疗行业为突破口,凭借在社保、医疗行业积累的资源,搭建了东软熙康这一智慧医疗平台。
14.金蝶金蝶KBI与金蝶ERP无缝集成,实现BI数据采集——集成——分析决策支持的一体化应用。
15.宝德宝德大数据云备份,是一个专为大数据而设的云备份方案,支持实体机及虚拟机备份,而且具有无限扩充的可能,并且完全自动。
16.启明星辰大数据时代的IP治理和审计,启明星辰提供了终端审计、终端数据防泄露、日志审计,通过综合审计平台来帮助用户解决IP治理需求等解决方案。
17.拓尔思
通过收购天行网安,可以拓展在公安行业的应用,目前正着力开拓行业应用市场,挖掘各个产业链中的大数据价值。
18.荣之联
零售、证券、生物、政府等都是荣之联大数据业务的主要目标行业,已为零售业提供了大数据分析的解决方案,解决了库存问题。
19.中科金财
作为国内领先的高端IT综合服务商,主要服务于金融业的大数据。
20.美亚柏科
专注于公安市场,其业务包括电子数据取证、电子数据鉴定、网络舆情分析、数字维权、公证云、搜索云以及取证云服务。
“大数据”近几年来可谓蓬勃发展,它不仅是企业趋势,也是一个改变了人类生活的技术创新。大数据对行业用户的重要性也日益突出。掌握数据资产,进行智能化决策,已成为企业脱颖而出的关键。因此,越来越多的企业开始重视大数据战略布局,并重新定义自己的核心竞争力。
国内做大数据的公司依旧分为两类:一类是现在已经有获取大数据能力的公司,如百度、腾讯、阿里巴巴等互联网巨头以及华为、浪潮、中兴等国内领军企业,做大数据致店一叭柒叁耳领一泗贰五零,涵盖了数据采集,数据存储,数据分析,数据可视化以及数据安全等领域另一类则是初创的大数据公司,他们依赖于大数据工具,针对市场需求,为市场带来创新方案并推动技术发展。其中大部分的大数据应用还是需要第三方公司提供服务。
越来越多的应用涉及到大数据,这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以,大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于此,对大数据进行分析的产品有哪些比较倍受青睐呢?
而在这里面,最耀眼的明星当属Hadoop,Hadoop已被公认为是新一代的大数据处理平台,EMC、IBM、Informatica、Microsoft以及Oracle都纷纷投入了Hadoop的怀抱。对于大数据来说,最重要的还是对于数据的分析,从里面寻找有价值的数据帮助企业作出更好的商业决策。下面,我们就来看看以下十大企业级大数据分析利器吧。
随着数据爆炸式的增长,我们正被各种数据包围着。正确利用大数据将给人们带来极大的便利,但与此同时也给传统的数据分析带来了技术的挑战,虽然我们已经进入大数据时代,但是“大数据”技术还仍处于起步阶段,进一步地开发以完善大数据分析技术仍旧是大数据领域的热点。
在当前的互联网领域,大数据的应用已经十分广泛,尤其以企业为主,企业成为大数据应用的主体。大数据真能改变企业的运作方式吗?答案毋庸置疑是肯定的。随着企业开始利用大数据,我们每天都会看到大数据新的奇妙的应用,帮助人们真正从中获益。大数据的应用已广泛深入我们生活的方方面面,涵盖医疗、交通、金融、教育、体育、零售等各行各业。
可视化分析
大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。
2. 数据挖掘算法
大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计
学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如
果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。
3. 预测性分析
大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。
4. 语义引擎
非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。
5.数据质量和数据管理。 大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。
大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。
大数据的技术
数据采集: ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
数据存取: 关系数据库、NOSQL、SQL等。
基础架构: 云存储、分布式文件存储等。
数据处理:
自然语言处理(NLP,Natural Language
Processing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机”理解”自然语言,所以自然语言处理又叫做自然语言理解也称为计算语言学。一方面它是语言信息处理的一个分支,另一方面它是人工智能的核心课题之一。
统计分析:
假设检验、显著性检验、差异分析、相关分析、T检验、 方差分析 、
卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、
因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。
数据挖掘:
分类 (Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity
grouping or association rules)、聚类(Clustering)、描述和可视化、Description and
Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)
模型预测 :预测模型、机器学习、建模仿真。
结果呈现: 云计算、标签云、关系图等。
大数据的处理
1. 大数据处理之一:采集
大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的
数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除
此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。
在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户
来进行访问和 *** 作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间
进行负载均衡和分片的确是需要深入的思考和设计。
2. 大数据处理之二:导入/预处理
虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这
些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使
用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。
导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。
3. 大数据处理之三:统计/分析
统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通
的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于
MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。
统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
4. 大数据处理之四:挖掘
与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数
据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于
统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并
且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)