大数据精准营销的价值和方法

大数据精准营销的价值和方法,第1张

数据精准营销的价值和方法

大数据营销价值:

随着全球的信息总量呈现爆炸式增长,移动互联网、可选渠道和设备增加以及不断变化的消费者特征,同时大数据技术的更新日益。大数据营销依托多平台的数据采集及大数据技术的分析及预测能力,使企业的营销更加精准,为企业带来更高的投资回报率。无论是线上还是线下大数据营销的核心在于在合适的时间,基于你对用户的了解,把你希望推送的东西通过合适的载体,以合适的方式,推送给合适的人。

大数据营销关键问题:问题1:怎么才能准确知道Who?Where?Do What? How Do?

大数据营销首先要解决的是数据汇聚的问题。通过打通用户在多个渠道上的行为数据,构建对用户行为和用户数据的深入洞察,一方面实时监控各渠道的用户行为特征,运营和营销的效果,进行优化;另一方面集中用户的数据,便于后续的深入挖掘工作,实现以用户为中心的数据汇聚,提升用户数据价值,实现用户交互的精准识别和多渠道数据打通,为用户提供更准确的服务和营销。

问题2:渠道及交叉渠道组合方式如何选择?

当营销预算不够的时候,如何在搜索和其他的渠道间进行营销预算的分配?是选择电子商务最优搜索渠道还是选择跨渠道组合营销呢?跨渠道营销预算如何进行排列组合?

问题3:如何通过个性化营销让企业离用户更近一点?

营销方式从海量广告过度到一对一以用户体验为中心的精准营销,一对一精准营销实际上是对于任何一个互联网用户在那一刻,在那一个渠道以一个独特的价格,推送一个独特的广告创意,效果是怎么样的。围绕用户、业务场景、触点、营销推送内容/活动推荐,并且基于跨渠道触发式的营销能力,在注重用户体验同时达到最佳的营销效果,并且可对营销进行跟踪,从而不断优化营销策略。

问题4:如何实现基于大数据营销的即时营销?

企业希望通过实时分析来获取竞争优势。精准营销也要求在活动的同时我们就能得到数据,立即优化营销效果。

大数据营销系统组成:

基于大数据的精准营销过程分为:采集和处理数据、建模分析数据、解读数据这么三个大层面。通过对客户特征、产品特征、消费行为特征数据的采集和处理,可以进行多维度的客户消费特征分析、产品策略分析和销售策略指导分析。通过准确把握客户需求、增加客户互动的方式推动营销策略的策划和执行。

网舟科技大数据营销项目的解决方案主体为:数据整合营销平台

营销管理平台中心有一个通用的工作流引擎,以及创新生动的用户界面。它具有高度自动化的特点,基于角色的协作,工作流工具使营销上很容易定义流程规划和管理预算、资源和内容,细分客户,定义规则和机制,创建和重建模板,执行活动,捕捉反应,定义领导流程和结果分析。营销商根据需求动态的格式化内容协调所有营销过程与跨越多渠道的用户交互,而视觉框架使这一切变得更直观。

大数据精准营销实现方式:

通过一个表达式构建器、原始SQL、或通过预定的过滤器进行构造。即可以基于一个无限数量的隐式或显式条件下,利用底层营销数据:包括历史客户交易、人口统计、模型评分、营销历史以及浏览行为等实时变量,进行细分和决策规则的配置。支持Offer(针对不同特点客户所要提供的营销内容、素材等的供给物)与渠道(网站、手机应用、邮件短信等)的关联配置。数据营销后台可对各触点的推送offer中的推送规则、推送内容进行定义,还可实现多渠道、多波次的营销定义,并负责精准营销的推荐实施。

以上是小编为大家分享的关于大数据精准营销的价值和方法的相关内容,更多信息可以关注环球青藤分享更多干货

大数据时代的营销怎么做?

大数据时代的营销怎么做?各公司在大数据方面出手阔绰。首席营销官调查网站(The CMO Survey)报道称,目前大约有5.5%的营销预算用于营销分析,这个数字将在未来3年内增加到8.7%。大家的期望值很高,许多公司正试图弄清楚如何破译数据,从中获得卓越的战略见解。

我非常支持这种获取和利用数据来推动决策的趋势。然而,这也是问题所在。随着数据量的增长,企业的数据利用率越来越低。我首先在2012年2月提出了如下问题:“在你的公司作出决策前,对现有或者索取的营销分析数据加以利用的项目占多大比例?”得到的结果是37%,当时我觉得这个比例太低。但当我在2013年8月提出同样的问题时,比例降至29%。图1显示了这个比例在过去18个月里持续下降。

但这个调查结果并非完全出人意料。回顾30年来相关调查的历史,数据利用率始终偏低,很多种类的营销信息都是如此,包括营销调研、广告调研和现在的社交媒体调研。这种偏低的营销分析数据利用率妨碍了大数据对利润的贡献。

妨碍有多大?有些人可能会说,营销分析等各种市场情报的最终衡量标准是能否增进企业对客户的了解。首席营销官调查网站请顶级营销人员对他们公司在“获得和利用对客户的深入见解”方面的表现打分。满分为5分,1分是糟糕,2分是尚可,3分是普通,4分是良好,5分是优秀。回顾过往得分,结果显示仍然处于普通水平(2013年8月为3.4分,2012年2月为3.5分,2009年8月为3.5分)。因此,即使用于营销分析的花费增多,但我们并未看到对客户的深入见解有所提高。

企业应该怎么做?首先,管理人员必须以终为始。上市计划、创造需求的活动和销售活动必须包括关于哪些数据应该收集以及如何利用它们的具体说明。当计划和策略中植入了大数据方案的时候,偏低的利用率可能会上升。

其次,企业必须花钱培训管理人员,让他们知道如何利用营销分析来获得洞察力、推动决策、实施策略和评估他们已经采取的行动。正是出于这个原因,我们在福库商学院(Fuqua)教授“市场情报”课程,专注于信息的“使用”而非“创造”。企业必须更加重视市场分析的应用部分。机构和咨询公司可以提供这类培训。

第三,企业必须找到和留住那些能够充分利用市场分析的合适人才。当问及“你的公司在多大程度上拥有能够充分利用市场分析的合适人才?”时(1分为没有合适的人才,7分为有合适的人才),仅仅3.4%的受访者给自己的公司打了7分,56%的人打了低于平均水平的分数。图2显示了完整的分数分布情况(平均分为3.4分,标准偏差为1.7分)。

1.数据采集数据采集其中分为线上与线下,而在这其中可以分为线下门店数据采集器安装、在特殊场景利用数据采集、利用LBS技术通过地域区分数据与通过线下采集数据来进行线上数据分析对比。线下门店数据采集与在特殊场景利用数据采集:线下门店数据采集是在指定的门店中安装一个数据采集器,采集到店顾客手机识别码;特殊场景采集数据是利用数据采集器,采集指定区域的手机识别码。LBS技术通过地域区分数据:LBS通过指定区域、地点来精选数据采集调取。通过铺设的数据采集器来进行实时的数据采集,而通过LBS来进行把所需要区域的数据调取出来,加以利用。2.数据清洗原始数据采集上来时往往都是不规则、非结构化的数据,而且数据大量存在重复、缺失、错误等问题。所以需要进行数据清洗也就是数据画像分析,并将清洗的结果传输到分析及运用系统中以供使用。原始数据中可能携带一些用户隐私相关的数据,在数据清洗时,需要通过标签化、分类化等等方式对这些数据进行处理。对于非结构化的数据我们也需要通过大数据平台进行数据建模及数据治理等方法将数据转化为结构化数据,这样才能后续统计分析的速度。3.数据运用前面二个运用只是基础的环节,最重要的是如何利用数据来达到营销效果。数据可视化是数据分析及运用环节十分重要的展示窗口,通过这个窗口可以让更多的、各级工种得到数据传递的规律和价值,并使数据在工作决策中起到十分重要的作用。除了数据可视化,用户画像分析也是重要的营销手段,通过线下数据和线上数据分析,进行精准客户一系列分析会更加了解客户他们的喜好、浏览习惯、是否拥有消费能力等等,根据这些还可以制定出符合精准客户痛点的营销方案,力求营销最大化。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/9082076.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-24
下一篇 2023-04-24

发表评论

登录后才能评论

评论列表(0条)

保存