大数据营销知识点总结

大数据营销知识点总结,第1张

一、走进大数据世界

大数据的特征(4V):

1.  数据的规模性

2.   数据结构多样性

3.   数据传播高速性

4.   大数据的真实性、价值性、易变性;

结构化数据、半结构化数据、非结构化数据

大数据处理的基本流程图

大数据关键技术:

1.  大数据采集

2.   大数据预处理

3.  大数据存储及管理

4.   大数据安全技术

5.  大数据分析与挖掘

6.   大数据展现与应用

二、大数据营销概论

Target 百货客户怀孕预测案例

大数据营销的特点:

1.   多样化、平台化数据采集: 多平台包括互联网、移动互联网、广电网、智能电视等

2.   强调时效性: 在网民需求点最高时及时进行营销

3.   个性化营销: 广告理念已从媒体导向转为受众导向

4.   性价比高: 让广告可根据时效性的效果反馈,进行调整

5.   关联性: 网民关注的广告与广告之间的关联性

大数据运营方式:

1.   基础运营方式

2.   数据租赁运营方式

3.   数据购买运营方式

大数据营销的应用

1.   价格策略和优化定价

2.   客户分析

3.   提升客户关系管理

4.   客户相应能力和洞察力

5. 智能嵌入的情景营销

6.   长期的营销战略

三、产品预测与规划

整体产品概念与整体产品五层次

整体产品概念: 狭义的产品: 具有某种特定物质形态和用途的物体。

产品整体概念(广义):向市场提供的能够满足人们某种需要的

                      一切物品和服务。

整体产品包含:有形产品和无形的服务                          

整体产品五层次:潜在产品、延伸产品、期望产品、形式产品、核心产品

 

大数据新产品开发模型:

1.   需求信息收集及新产品立项阶段

2.  新产品设计及生产调试阶段

3.  小规模试销及反馈修改阶段

4.   新产品量产上市及评估阶段

产品生命周期模型

传统产品生命周期划分法:

(1)销售增长率分析法

  销售增长率=(当年销售额-上年销售额)/上年销售额×100%

销售增长率小于10%且不稳定时为导入期;

销售增长率大于10%时为成长期;

销售增长率小于10%且稳定时为成熟期;

销售增长率小于0时为衰退期。

(2)产品普及率分析法

    产品普及率小于5%时为投入期;

    普及率在5%—50%时为成长期;

    普及率在50%—90%时为成熟期;

    普及率在90%以上时为衰退期。

大数据对产品组合进行动态优化

产品组合

       销售对象、销售渠道等方面比较接近的一系列产品项目被称为产品线。产品组合是指一个企业所经营的不同产品线和产品项目的组合方式,它可以通过宽度、长度、深度和关联度四个维度反映出来

四、产品定价与策略

大数据定价的基本步骤:

1.   获取大数据

2.   选择定价方法

3.   分析影响定价因素的主要指标

4.  建立指标体系表

5.   构建定价模型

6.  选择定价策略

定价的3C模式:成本导向法、竞争导向法、需求导向法

影响定价的主要指标与指标体系表的建立

影响定价因素的主要指标:

1.  个人统计信息:家庭出生、教育背景、所在地区、年龄、感情状况、家庭关系等。

2.   工作状况:行业、岗位、收入水平、发展空间等

3.  兴趣:健身与养生、运动和户外活动、娱乐、科技、购物和时尚等

4. 消费行为:消费心理、购买动机等。

定价策略:

精算定价: 保险、期货等对风险计算要求很高的行业

差异定价: 平台利用大数据对客户建立标签,分析对产品的使用习惯、需求判断客户的忠诚度,对不同客户进行差别定价

动态定价: 即根据顾客认可的产品、服务的价值或者根据供需状况动态调整服务价格,通过价格控制供需关系。动态定价在提高消费者价格感知和企业盈利能力方面起着至关重要的作用。

价格自动化 :根据商品成本、市场供需情况、竞争产品价格变动、促销活动、市场调查投票、网上协商、预订周期长短等因素决定自身产品价格

用户感知定价 :顾客所能感知到的利益与其在获取产品或服务中所付出的成本进行权衡后对产品或服务效用所做出的整体评价。

协同定价: 是大数据时代企业双边平台多边协同定价策略

价格歧视:

一级 :就是每一单位产品都有不同的价格,即商家完全掌握消费者的消费意愿,对每个消费者将商品价格定为其能够承受的最高出价;

二级 :商家按照客户的购买数量,对相同场景提供的、同质商品进行差别定价;

三级 :可视为市场细分后的定价结果,根据客户所处的地域、会员等级等个人属性进行差别定价,但是对于同一细分市场的客户定价一致。

五、销售促进与管理

    促销组合设计概念

大数据促销组合设计流程

精准广告设计与投放

[if !supportLists]l [endif] 广告设计5M:任务(Mission),预算(Money),信息(Message),媒体(Media),测量(Measurement)。

通过用户画像的进一步挖掘分析,企业可以找出其目标消费群体的广告偏好,如平面广告的配色偏好,构图偏好,视频广告的情节偏好,配乐偏好,人物偏好等,企业可以根据这些偏好设计出符合目标消费群体审美的广告创意,选择消费者喜欢的广告代言人,做出能在目标消费群体中迅速传播开来的广告。

在媒体决策方面,利用大数据综合考虑其广告目的、目标受众覆盖率、广告信息传播要求、购买决策的时间和地点、媒体成本等因素后,有重点地采用媒体工具。企业可以在确定前述影响变量后,通过大数据的决策模型,确定相对最优的媒体组合。

六、客户管理

    大数据在客户管理中的作用

1.   增强客户粘性

2.   挖掘潜在客户

3.   建立客户分类

    客户管理中数据的分类、收集及清洗

数据分类:

描述性数据: 这类数据是客户的基本信息。

如果是个人客户,涵盖了客户的姓名、年龄、地域分布、婚姻状况、学历、所在行业、职业角色、职位层级、收入水平、住房情况、购车情况等;

如果是企业客户,则包含了企业的名称、规模、联系人和法人代表等。

促销性数据: 企业曾经为客户提供的产品和服务的历史数据。

包括:用户产品使用情况调查的数据、促销活动记录数据、客服人员的建议数据和广告数据等

交易性数据: 这类数据是反映客户对企业做出的回馈的数据。

包括历史购买记录数据、投诉数据、请求提供咨询及其他服务的相关数据、客户建议数据等。

收集:

清洗:

首先,数据营销人需要凭借经验对收集的客户质量进行评估

其次,通过相关字段的对比了解数据真实度

最后,通过测试工具对已经确认格式和逻辑正确数据进行测试

客户分层模型

客户分层模型 是大数据在客户管理中最常见的分析模型之一,客户分层与大数据运营的本质是密切相关的。在客户管理中,出于一对一的精准营销要求针对不同层级的客户进行区别对待,而客户分层则是区别对待的基础。

RFM客户价值分析模型

时间(Rencency):

     客户离现在上一次的购买时间。

频率(Frequency):

     客户在一定时间段内的消费次数。

货币价值(MonetaryValue):

    客户在一定的时间内购买企业产品的金额。

七、 跨界营销

利用大数据跨界营销成功的关键点

1.   价值落地

2.  杠杠传播

3.   深度融合

4.   数据打通

八、精准营销

    精准营销的四大特点

1.   可量化

2.   可调控

3.  保持企业和客户的互动沟通

4.  简化过程

精准营销的步骤

1.  确定目标

2.  搜集数据

3.   分析与建模

4.  制定战略

九、商品关联营销

       商品关联营销的概念及应用

关联营销:

关联营销是一种建立在双方互利互益的基础上的营销,在交叉营销的基础上,将事物、产品、品牌等所要营销的东西上寻找关联性,来实现深层次的多面引导。

关联营销也是一种新的、低成本的、企业在网站上用来提高收入的营销方法。

       关联分析的概念与定义

最早的关联分析概念: 是1993年由Agrawal、Imielinski和Swami提出的。其主要研究目的是分析超市顾客购买行为的规律,发现连带购买商品,为制定合理的方便顾客选取的货架摆放方案提供依据。该分析称为购物篮分析。

电子商务领域: 关联分析可帮助经营者发现顾客的消费偏好,定位顾客消费需求,制定合理的交叉销售方案, 实现商品的精准推荐 ;

保险公司业务: 关联分析可帮助企业分析保险索赔的原因,及时甄别欺诈行为;

电信行业: 关联分析可帮助企业发现不同增值业务间的关联性及对客户流失的影响等

简单关联规则及其表达式

事务:简单关联分析的分析对象

项目:事务中涉及的对象

项集:若干个项目的集合

简单关联规则 的一般表示形式是:前项→后项(支持度=s%,置信度=c%)

或表达为:X→Y(S=s%,C=c%)

例如:面包->牛奶(S=85%,C=90%)

            性别(女)∩收入(>5000元)→品牌(A)(S=80%,C=85%)

支持度、置信度、频繁项集、强关联规则、购物篮分析模型

置信度和支持度

support(X→Y)= P(X∩Y)                  

confidence(X→Y)= P(Y|X)

十、评论文本数据的情感分析

       商品品论文本数据挖掘目标

电商平台激烈竞争的大背景下,除了提高商品质量、压低商品价格外,了解更多消费者的心声对于电商平台来说也变得越来越有必要,其中非常重要的方式就是对消费者的文本评论数据进行内在信息的数据挖掘分析。评论信息中蕴含着消费者对特定产品和服务的主观感受,反映了人们的态度、立场和意见,具有非常宝贵的研究价值。

针对电子商务平台上的商品评论进行文本数据挖掘的目标一般如下:

分析商品的用户情感倾向,了解用户的需求、意见、购买原因;

从评论文本中挖掘商品的优点与不足,提出改善产品的建议;

提炼不同品牌的商品卖点。

商品评论文本分析的步骤和流程

商品评论文本的数据采集、预处理与模型构建

数据采集:

1、“易用型”:八爪鱼、火车采集器

2、利用R语言、Python语言的强大程序编写来抓取数据

预处理:

1文本去重

检查是否是默认文本

是否是评论人重复复制黏贴的内容

是否引用了其他人的评论

2机械压缩去词

例如: “好好好好好好好好好好”->“好”

3短句删除

原本过短的评论文本      例如:很“好好好好好好好好好好”->“好”

机械压缩去词后过短的评论文本   例如:“好好好好好好好好好好”->“好”

4评论分词

文本模型构建包括三方面:情感倾向分析、语义网络分析、基于LDA模型的主体分析

 

情感倾向分析:

基于情感词进行情感匹配

对情感词的倾向进行修正

对情感分析结果进行检验

语义网络分析:

基于LDA模型的主体分析

十一、大数据营销中的伦理与责任

       大数据的安全与隐私保护

数据安全:一是保证用户的数据不损坏、不丢失;二是要保证数据不会被泄露或者盗用

 

大数据营销中的伦理风险:用户隐私、信息不对称下的消费者弱势群体、大数据“杀熟”

大数据伦理困境的成因:

用户隐私意识淡薄

用户未能清晰认知数据价值

企业利益驱使

] 管理机制不够完善

大数据伦理构建的必要性:企业社会责任、用户与社会群体的维系

这些是我按照老师讲的课本上的内容结合PPT总结出来的《大数据营销》的重点。

大数据攻略案例分析及结论

我们将迎来一个“大数据时代”。与变化相始终的中国企业,距离这场革命还有多远?而追上领先者又需要多快的步伐?

{研究结论}

怎样才能用起来大数据?障碍如何解决?中国企业家研究院对10多家在大数据应用方面的领先企业进行了采访调研,更多家企业进行了书面资料调研,我们发现:

■    当前中国企业的大数据应用可以归类为:大数据运营、大数据产品、大数据平台三大=领域,前两者更多是企业内部的应用,后者则在于用大数据来繁荣整个平台企业群落的生态。

■    大数据营销的本质是一个影响消费者购物前心理路径的问题,而这在大数据时代前很难做到。

■    对于传统企业而言,要打通线上与线下营销,实现新的商业模式,如O2O等,离不开大数据。

■    虽然大数据应用往往集中于大数据营销,但对于一些企业,大数据的应用早已超越了营销范畴,全面进入了企业供应链、生产、物流、库存、网站和店内运营等各个环节。

■    对于大部分企业,由于数据分析人员与业务人员之间的彼此视角与思考方向不同,大数据分析和运营之间存在脱节情况,这是大数据无法用于企业运营最大的阻力

■    对于大多数互联网公司来说,大数据量、大用户量是一个相互促进,强者越强的循环过程。

■    对于大型互联网平台,大数据已经成为其生态循环中的血液,对于这些企业,最重要

的不是如何利用大数据改进自身运营,而是利用大数据更好地繁荣平台生态。

■    对于平台企业,它们的大数据策略正逐渐从大数据运营,向运营大数据转变,前者和

后者的差别在于,前者只是运营改进的动力,而后者则成为企业实现未来战略的核心资源。

我们都已被反复告知:我们将迎来一个“大数据时代”。

大数据应用,将和云计算、3D打印这些技术变革一样,颠覆既有规则,并成为先行企业的制胜关键。

与变化相始终的中国企业,距离这场革命还有多远?而追上领先者又需要多快的步伐?

来自于互联网、移动互联网、物联网传感器、视频采集系统的数据正海量增长,汇成大数据的海洋,相伴的是海量数据存储、分析技术的突破性发展,所有这一切都给企业的应用带来了无限可能性。

许多企业希望将大数据用起来,带动企业的经营,但不知从哪里着手。它们不惜重金投资大数据信息系统、分析系统,聘请更多的人才,希望能从这个新趋势中获益,不过却无奈地发现,大数据仍然停留在云端,没有带来多少实际收益。它们找不到大数据与业务结合的突破口。而一些真正将大数据应用于实战的企业,却在应用过程中困难重重:大数据无法与业务结合;没有收集、分析海量数据的能力;经营人员缺少应用大数据的动力;数据来源鱼龙混杂难以使用……

中国企业家研究院对当前中国企业大数据应用的状况进行了归纳分类,以帮助企业了解实际应用大数据时的困局难点,并提供领先企业的典型案例以资借鉴。

表1

表2

大数据运营—企业提升效率的助推力

对于大多数企业而言,运营领域的应用是大数据最核心的应用,之前企业主要使用来自生产经营中的各种报表数据,但随着大数据时代的到来,来自于互联网、物联网、各种传感器的海量数据扑面而至。于是,一些企业开始挖掘和利用这些数据,来推动运营效率的提升。大数据运营应用中,大数据的应用分为三类:用于企业外部营销、用于内部运营,以及用于领导层决策。

一、大数据营销

大数据营销的本质是影响目标消费者购物前的心理路径,它主要应用在三个方面:1、大数据渠道优化,2、精准营销信息推送,3、线上与线下营销的连接。在消费者购物前,通过各种方式,直接介入其信息收集和决策过程。而这种介入,是建立在对于线上与线下海量用户数据分析的基础之上。相比传统狂轰滥炸或等客上门的营销,大数据营销无论在主动性和精准性方面,都有非常大的优势。它是目前主要的大数据应用领域。

大数据营销不仅仅是用大数据找出目标顾客,向其发布促销信息,它还可以做到:

实现渠道优化。根据用户的互联网痕迹进行渠道营销效果优化,就是根据互联网上顾客的行为轨迹来找出哪个营销渠道的顾客来源最多,哪个来源顾客实际购买量最多,是否是目标顾客等等,从而调整营销资源在各个渠道的投放。例如东风日产,它利用对顾客来源的追踪,来改进营销资源在各个网络渠道如门户网站、搜索和微博的投放。

精准营销信息推送。精准建立在对海量消费者的行为分析基础之上,消费者网络浏览、搜索行为被网络留下,线下的购买和查看等行为可以被门店的POS机和视频监控记录,再加上他们在购买和注册过程中留下的身份信息,在商家面前,正逐渐呈现出消费者信息的海洋。

一些企业通过收集海量的消费者信息,然后利用大数据建模技术,按消费者属性(如所在地区、性别)和兴趣、购买行为等维度,挖掘目标消费者,然后进行分类,再根据这些,对个体消费者进行营销信息推送。比如孕妇装品牌十月妈咪通过对自己微博上粉丝评论的大数据分析,找出评论有“喜爱”相关关键词的粉丝,然后打上标签,对其进行营销信息推送。京东商城副总经理李曦表示:“用大数据找出不同细分的顾客需求群,然后进行相应的营销,是京东目前在做的事情。”小也化妆品将自身网站作为收集消费者信息的雷达,对不同消费者推荐相应的肌肤解决方案,创始人肖尚略希望在未来,大数据营销能替代网站的作用,真正成为面向顾客的前端。

打通线上线下营销。一些企业将互联网上海量消费者的行为痕迹数据与线下购买数据打通,实现了线上与线下营销的协同。比如东风日产,线上与线下的协同营销方式为:其门户网站带来订单线索,而通过这些线索,服务人员进行电话回访,从而推动顾客在线下交易。在此过程中,东风日产记录了消费者进入、浏览、点击、注册、电话回访和购买各个环节的数据,实现了一个横跨线上线下,以大数据分析为支持的,营销效果不断优化的闭环营销通路。而国双科技,衡量某一地区线下促销活动的效果,就是看互联网上,来自这个地区对于促销内容的搜索量。一些企业,通过鼓励线下顾客使用微信和Wi-Fi等可追踪消费者行为和喜好的设备,来打通线上与线下数据流,银泰百货计划铺设Wi-Fi,鼓励顾客在商场内使用,然后根据Wi-Fi账号,找出这个顾客,再通过与其它大数据挖掘公司合作,以大数据的手段,发掘这个顾客在互联网的历史痕迹,来了解这个顾客的需求类型。

二、大数据用于内部运营

相比大数据营销,大数据在内部运营中的应用更深入,对于企业内部的信息化水平,以及数据采集和分析能力的要求更高。本质上,是将企业外部海量消费者数据与企业内部海量运营数据联系起来,在分析中得到新的洞察,提升运营效率。(详见P96表5:大数据在内部运营中的应用)

表5

三、大数据用于决策

在大数据时代,企业面对众多新的数据源和海量数据,能否基于对这些数据的洞察,进行决策,进而将其变成一项企业竞争优势的来源?同大数据营销和大数据内部运营相比,运用大数据决策难度最高,因为它需要一种依赖数据的思维习惯。

已有少数企业开始尝试。比如国内一些金融机构在推出一个金融产品时,会广泛分析该金融产品的应用情况和效果、目标顾客群数据、各种交易数据和定价数据等,然后决定是否推出某个金融产品。

但是,中国企业家研究院在调研中发现,目前中国企业当中,大数据决策的应用非常之少,许多企业领导者进行决策时,仍习惯于凭借历史经验和直觉。

大数据产品——企业利润滋长的新源泉

大数据除了用于运营外,还能够与企业产品结合,成为企业产品背后竞争力的核心支持或者直接成为产品。提供大数据产品的企业分为两类,直接提供大数据产品的企业,以及将大数据作为产品和服务核心支撑的企业。前者主要为大数据产业链中提供数据服务的参与者,包括数据拥有者、存储企业,挖掘企业、分析企业等,后者则主要是那些以大数据为产品核心支撑的企业,它们大多是互联网企业,其产品和服务先天就有大数据基因,这些企业包括搜索引擎、在线杀毒、互联网广告交易平台以及众多植根于移动互联网之上,为用户提供生活和资讯服务的APP等。

表3

表4

一、大数据作为产品核心支持

它们主要在以下几方面使用大数据:

1、提供信息服务。很多互联网企业通过对海量互联网信息和线下信息的整合和分析,为个人和企业提供信息服务,典型的如百度、去哪儿、一淘、高德地图、春雨医生等等。在美国,一些互联网企业甚至根据大数据提供更深度的预测信息服务,美国科技创新公司farecast,通过分析特定航线机票的价格,帮助消费者预测机票价格走势。

2、分析用户的个性化需求,借此提供个性化产品和服务,或者实现更精准的广告。典型的有移动社交工具陌陌、百度、腾讯、广告交易平台品友互动以及一些互联网游戏商。这种应用往往先是收集海量用户的互联网行为数据,将用户分类,根据不同类型的用户,提供个性化的产品,或者提供个性化的促销信息。比如网易等门户网站推出了订阅模式,让使用者按照个人喜好方便地定制和整合不同来源的信息。

3、增强产品功能。对于很多互联网产品,如杀毒软件、搜索引擎等等,海量数据的处理能够让产品变得更聪明更强大,如果没有大数据,产品的功能就大大减弱。比如奇虎360公司的360杀毒软件,凭借每天海量的杀毒处理,建立了庞大的病毒库,这使它能够更快地发现病毒,而一些小的杀毒软件公司则无法做到这一点。

4、掌控信用状况,提供信贷服务。阿里巴巴上汇集了海量中小企业的日常资金与货品往来,通过对这些往来数据的汇总与分析,阿里巴巴能发现单个企业的资金流与收入情况,分析其信用,找出异常情况与可能发生的欺诈行为,控制信贷风险。

5、实现智能匹配。婚恋网站、交易平台等,利用大数据可以进行精准而高效的配对服务。网易花田会挖掘用户行为数据,比如点击哪些异性的页面,发表什么样的评论,建立用户兴趣模型,从而挖掘到用户所期待另一半的类型,然后主动推荐与对方匹配度比较高的人选。2010年,阿里巴巴尝试性地推出“轻骑兵”服务,由阿里巴巴将中国各产业集群地的供应商与海外买家的个性采购需求进行快速匹配,所凭借的,就是对供应商的海量交易数据信息的整合与挖掘。

大数据作为产品核心支撑的关键在于用户量。对于大多数互联网公司来说,用户量越多,收集的数据越多,凭借更多的数据,其产品与商业模式会不断改进,进而带来更多的用户。

二、大数据直接作为产品

对一些企业,大数据直接成为了产品,这些产品包括海量数据、分析、存储与挖掘的服务等,目前大数据产业链正在形成过程中,出现了一批开放、出售、授权大数据和提供大数据分析、挖掘的公司和机构,前者主要是一些拥有海量数据的公司,将数据服务作为新的盈利来源。如大型的互联网平台、民航、电信运营商、一些拥有大数据的政府机构等等,后者主要包括一些能够存储海量数据或者将海量数据与业务场景结合,进行分析和挖掘,或者提供相关产品的公司,如IBM、SAP、拓而思、天睿公司。它们为大数据应用者们提供海量数据存储、数据挖掘、图像视频、智能分析等服务以及相关系统产品。

大数据平台——企业群落繁荣的滋养剂

相对企业本身对大数据的应用,大数据平台更多是利用大数据来搭建企业生态。一些拥有庞大数据资源的大型互联网平台,已变为包含海量寄生者的生态系统。在这个生态系统中,它们将海量用户互联网行为痕迹和分析提供给平台上的企业,用于它们改善经营,推动整个平台生态繁荣,在这一过程中,它们也收取数据服务费。阿里巴巴就是一个典型的例子,从数据魔方、黄金策到聚石塔,阿里巴巴不断地为平台上中小电商提供数据产品和服务。

而百度已建成了包括百度指数、司南、风云榜、数据研究中心和百度统计在内的五大数据体系平台,帮助其营销平台上的企业了解消费者行为、兴趣变化,以及行业发展状况、市场动态和趋势、竞争对手动向等信息。

而当大数据从企业内部运营的动力,变成平台企业的产品和服务时,平台企业也在经历着一个从大数据运营到运营大数据的阶段。数据从运营的支持工具,变成了生产资料。此前平台们的关注点,更多的是如何用好现有的大数据。而未来,它们的关注点则更多是如何将大数据这个生产资料管理好、经营好,如何更好地为平台上的企业服务。这就涉及到收集的数据质量怎样?格式标准是否统一?数据作为一种原材料,其精细化程度如何?是否符合平台上企业应用的具体场景?是平台上企业拿来就能用的,还是还需要平台上的企业再加工?

为解决这些问题,各个平台在积极地努力。比如阿里巴巴建立了数据委员会,在统一数据格式标准、从源头上保证数据的质量,采集和加工出精细化的数据,确保其能符合平台企业的应用场景等方面,不遗余力地尝试。尤其在大数据精细化方面,阿里巴巴更是作为其大数据战略的重点。这方面,腾讯目前也在加快步伐。比如新版腾讯网出现了“一键登录”的提示,用户可以在上面通过一些细分标签,订阅自己关注的内容。实际上,这也是腾讯收集更精细化的用户兴趣数据的一个有效手段。

Tips

大数据实战手册

将大数据应用于内部运营中时,企业会遇到一些常见问题

1企业如何获取与分析数据?

互联网是大数据的一个主要来源,一些线下的传统企业很难获得。但它们可以:

a  和拥有或能抓取海量数据的平台、企业以及政府机构合作。比如淘宝上的电商就购买淘宝收集的海量数据中与自身运营相关的部分,用于自身业务。再如卡夫通过与IBM合作,在博客、论坛和讨论版的内容中抓取了47.9万条关于自己产品的讨论信息,通过大数据分析出消费者对卡夫食品的喜爱程度和消费方式。

b  建立自己在互联网上的平台,比如朝阳大悦城利用自己的微信、微博等平台收集消费者评论数据。

c  许多传统企业没有分析海量数据的能力,此时它们可以和大数据分析和挖掘公司合作,目前市场上已经有天睿公司、IBM、百分点、华胜天成等一批提供大数据分析和挖掘服务的公司,它们是传统企业进行大数据分析可以借助的力量。

2 如何避免大数据应用时的部门分割?

对于许多企业,其信息流被各部门彼此分割,数据难以互通,对于这种情况下,大数据的共享和汇集就只是一个泡影,更难以实现大数据的深度应用。

要打通部门之间信息分割的局面,首先要建立统一的、集中的数据系统。就像立白信息与知识总监王永红所说的,“要真正用好大数据,企业要采用大集中的信息系统。”从更深入的角度来谈,企业信息流的部门分割,更在于企业部门之间的分割,比如有一些企业的营销按照渠道分割,导致对于顾客的大数据收集和分析效果大打折扣。

IBM智慧商务技术总监杨旭青认为,“很多时候由于组织结构问题,大数据分析有效性大大降低了。”这就需要组织与流程层面的重新设计,在这方面,阿里巴巴的部门负责人轮岗制度,对于打破部门壁垒无疑是一剂好药。而一些企业为了打破部门分割,建立了矩阵型的组织结构,强化部门间的横向合作,这些无疑为大数据的汇集、共享与应用创造了良好条件。

3 如何让业务人员重视大数据的应用?

解决这个问题,一方面在于一把手对整个企业数据文化的倡导,比如1号店董事长于刚就要求业务人员无论在开会,还是汇报工作时,都以数据说话,而马云更是将大数据提升到了战略高度。

另一方面,也在于数据部门的带动,阿里巴巴数据委员会负责人车品觉分享了经验,“因为运营部门的业务人员很难看到大数据的潜力,可以首先从一些对业务见效快,见效显著的数据项目出发,通过一两个项目的成功,调动对方的积极性,然后再逐步一个个地引导。”

4 为何大数据工作与运营需求脱节?

这往往是由于数据人员与业务人员视角、专业知识不同而导致的。大数据人员做了很多努力,但是业务人员却认为这些努力无关痛痒。如何解决这个问题?

有的企业从组织设计上发力,将大数据纳入业务分析部门的管理之下,用业务统驭数据。对于朝阳大悦城,由主要负责战略和经营分析的部门来管理大数据工作,其中的大数据分析人员则作为支持人员。在负责人张岩看来,大数据要靠商业法则指导,关键是找到业务需求的点,然后由数据分析和挖掘人员实现。在具体 *** 作中,大悦城对微信的数据挖掘,挖掘什么样的关键词,由业务分析人员确定,而具体挖掘则由数据部门做;有的企业从流程设计上着手,推动业务部门与数据部门人员之间的沟通,建立数据人员工作与效果挂钩的考核机制。

例如阿里巴巴根据数据挖掘的成效(比如带来的商品转化率的提升)来考核数据挖掘师,考核数据分析师则看其分析结果能否出现在经营负责人的报告中。从数据部门自身角度则需要降低运营部门使用数据的障碍和门槛,比如立白集团的数据人员会努力尝试向运营部门提供更易懂、更生动的图形化数据分析界面,在立白老板办公室上,就有一份“客户运营健康体检表”,让老板对全国经销商的当月销售情况一目了然。再如阿里巴巴开发的无线Bi,让经营人员在手机上也可以看到大数据分析结果,拿车品觉的话说,“以数据之氧气包围经营人员。”

以上是小编为大家分享的关于大数据攻略案例分析及结论的相关内容,更多信息可以关注环球青藤分享更多干货

大数据营销等同于精准营销,或是精准营销是大数据营销的一个核心方向和价值体现。然而,数据本身不会产生价值。为此,我们要把数据组织成数据资源体系,再对数据进行层次、类别等方面的划分。在此基础上,通过分析数据资源和相关部门的业务对接程度,以此发挥数据资源体系在管理、决策、监测及评价等方面的作用,从而产生大数据的大价值,真正实现了从数据到知识的转变,为领导决策提供服务依据本例根据工作实践。本例以三个工作实例,展示如何通过对数据分析进行对客户的精准营销。工具/原料大数据营销大数据营销三个案例分析案例一:笔者在银行工作,通过对储户身份z信息进行海量剖析,发现一个有趣的现象,即购买理财产品的客户以40-50岁的女性居多。根据这一信息,有经验的理财经理通过身份z信息即能准确的分析出支行有哪些符合条件的客户,迅速的对新推出的理财产品进行电话营销,做到不出门即可实现销售,较快的完成了销售任务。而另一些更具创新性的理财经理,通过身份z信息,在情人节期间组织了网点沙龙客户邀约活动,对符合18-30岁、30-45岁这两个年龄段的男性客户进行了电话营销,通过赠送爱人鲜花、化妆品以及高价值的礼品进行金融产品营销,较好的引起男性客户的兴趣,有力的拉升了业绩增长。这些数据分析手段就能够做到个性化营销和定位,加强对客户的认知,为客户找到价值,从而带动销量。案例二:在与供电部门合作期间,供电部门提供了一条信息,市里每一天上网高峰期主要集中在中午12点之后和晚上的12点之前。供电部门认为,出现这种“怪现象”的原因是因为现在的人们普遍睡觉前都会有上网的习惯。这条信息当时很多人没有注意,似乎与银行搭不上关系,但我们市场经营部门的一个年轻的大学生针对人们这种“强迫症”,通过手机银行与商家合作,在晚上12点进行促销秒杀活动,即推动了手机银行业务量的提升,同时也带动商家销量的倍增,实现了双赢。案例三:在为企业代发工资数据中,我们曾发现一个现象,即一般企业员工代发帐户每月都会沉淀一定的余额,金额不大,1000元也有,几千的也有,长期不动的也有,活期利率很低,但是这些客户的帐户金额又达不到理财产品的起售金额,这些客户工资用了也就用了,成了“月光族”,没有理财理念。如何通过分析这些数据信息直接进行客源组织,为这些具有相同需求的人群量身定做金融服务,并享受”一客(群)一策“的定制服务,我们进行专题研究。最终,我们在零存整取、基金定投和适时到帐理财产品上进行了产品打包宣传,同步利用xyk宣传,几场现场专题沙龙下来,引起了不少企业员工的注意和兴趣,着实为这些收入不高的人群提供了一条实实在在的理财渠道。这三个小故事就是对历史数据进行挖掘的结果,反映的是数据层面的规律,它通过对大量的数据系统中提取、整合有价值的数据,从而实现从数据到知识、从信息到知识、从知识到利润的转化。简单来说就是:5个合适,在合适的时间、合适的地点、将合适的产品以合适的方式提供给合适的人。5具体来讲,当我们通过对完成数据分析之后,找出相同的规律,当然还有一些个性化数据体现,为此具体的应用场景需要根据企业、业务的具体情况进行精准营销策划、设计。概括来讲,我们需要以下三个步骤:第一步:数据采集,了解用户,通过收集用户所有的数据,主要包括静态信息数据、动态信息数据两大类,静态数据就是用户相对稳定的信息,如性别、地域、职业、消费等级等,动态数据就是用户不停变化的行为信息,如消费习惯、购买行为等第二步:分析这些数据,给客户画像,画像代表客户对营销内容有兴趣、偏好、需求等,分析推算客户的兴趣程度、需求程度、购买概率等第三步,也就是最后一步,将这些画面综合起来,拼成一张较为完整的图,这样我们对客户就有了一个大概的了解。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/9099298.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-24
下一篇 2023-04-24

发表评论

登录后才能评论

评论列表(0条)

保存