大数据时代下,如何做好市场营销的推广工作?下面我为大家整理了在大数据时代,做好市场营销推广工作的要点和技巧,欢迎大家阅读参考!
如何做好市场营销
大数据对用户行为与特征分析
显然,只要积累足够的用户数据,才能分析出用户的喜好与购买习惯,甚至做到"比用户更了解用户自己"。这是大数据营销的前提与出发点。过去虽也有"一切以客户为中心"作为口号的企业经营思想,可以想想真的能及时全面地了解客户的需求与所想吗,或许只有大数据时代这个问题的答案才能更加明确。
过大数据支撑精准营销信息推送
过去多少年了,精准营销总在被许多公司提及,但是真正做到的少之又少,反而是垃圾信息泛滥。究其原因,主要是过去名义上的精准营销并不怎么精准,因为其缺少用户特征数据支撑及详细准确的分析。现在的RTB广告的应用则向人们展示了比以前更好的精准性,而其背后靠的是大数据支撑。
大数据让营销活动更能投其所好
如果能在产品生产之前了解潜在用户的主要特征,以及他们对产品的期待,那么你的产品即可投其所好。如《小时代》在预告片投放后,即从微博、微信上通过大数据分析得知其电影的主要观众群为90后女性,因此后续的营销活动则主要针对这些人群展开。
大数据帮助企业筛选重点客户
许多企业家纠结的事是:在企业的用户、好友与粉丝中,哪些是最有价值的用户?有了大数据,或许这一切都可以更加有事实支撑。从用户访问的各种网站可判断其最近关心的东西是否与你的企业相关,从用户在社会化媒体上所发布的'各类内容及与他人互动的内容中,可以找出千丝万缕的信息,利用某种规则关联及综合起来,就可以帮助企业筛选重点的目标用户。
大数据分析消费者的特点
面对日新月异的新媒体,许多企业想通过对粉丝的公开内容和互动记录分析,将粉丝转化为潜在用户,激活社会化资产价值,并对潜在用户进行多个维度的画像,其目的就是更加精准地分析你的产品消费者特点。
大数据可以分析活跃粉丝的互动内容,设定消费者画像各种规则,关联潜在用户与会员数据,关联潜在用户与客服数据,筛选目标群体做精准营销,进而可以使传统客户关系管理结合社会化数据,丰富用户不同维度的标签,并可动态更新消费者生命周期数据,保持信息新鲜有效。
在大数据分析架构下的众多商业管理模式中,UFO模型较为引人关注,这里U代表User experience,即用户体验,其对应的方向是产品设计F代表Freemium,即免费商业模式,其对应的方向是商业模式研究和设计O代表精细化运营,其对应的方向是产品营销运营。研究认为(2014)大数据在以下三个方面起到不同程度的作用。其中,大数据与U(用户体验)及F(免费商业模式)关联度中等,而与O(精细化运营)关联度最高。
今天我们的经营者大数据分析在商业模式设计、商业模式研究、创新商业模式等方面的能力还比较弱,可能到目前在中国还没看到非常成功的利用大数据分析来设计商业模式的案例,也许是因为计算机目前的智慧还没达到设计商业模式的能力高度。
但我们可以通过大数据分析方法进行行业监测以及进行创新监测,从而可以辅助战略规划人员来进行商业模式的设计。
好产品是运营出来的,互联网产品需要不断运营、持续打磨。产品运营的目的是为了扩大用户群、提高用户活跃度、寻找合适商业模式并增加收入。
成功的互联网运营要做到精细化运营,成功的精细化运营需要大数据支撑。大数据和互联网思维在此方面关联度最高。所以,企业在大数据的应用场景上,一定是要优先考虑如何通过大数据进行精细化运营,以驱动更好的运营效率和效果的提升。
基于大数据可以更好的做精细化运营监控、更准确的做用户细分、更准确的进行个性化推荐、更合理的进行营销推广效果的评估以及基于用户生命周期进行相关的营销策略创新。具体在以下几个方面值得关注:
1、通过基于大数据的方法进行用户细分。基于大数据可以找出更好的细分维度,并对用户做更好区隔,以辅助产品运营人员做更加准确的用户细分,并洞察每个细分人群的兴趣爱好和消费倾向,对每类用户分别进行有针对性的策划和运营活动。
2、通过大数据的方法,可以实现对不同通过渠道的效果评估。如果只看一些表面的数据,如广告的点击率,是非常难衡量不同推广渠道的真正效果。如果把用户的渠道行为和后续产品行为(即通过渠道获取的用户在产品上的各种使用行为)进行打通跟踪,在此数据基础上构建渠道质量评估模型,将能够更好的发现渠道的真正质量,或者更直接的,可以发现推广渠道的究竟有多少是虚假的流量。
3、通过利用基于大数据进行有针对性的用户画像,并通过用户画像数据、用户行为和偏爱,结合个性化推荐算法实现根据用户不同的兴趣和需求推荐不同的商品或者产品,通过算法真正的实现"投其所好",以实现推广资源效率和效果最大化。
大数据信息促进营销模式转型大数据之父”维克托·迈尔舍恩伯格认为,世界的本质就是大数据。
仔细想来,确实如此。随着大数据时代悄然来临,数据不再是一个抽象的专业名词,它已经无孔不入地渗透到我们生活的方方面面。
每当飓风来临之前,美国沃尔玛都会将手电筒和蛋挞摆在一起出售,这是因为通过对沃尔玛的多维数据分析发现,季节性飓风到来之前,手电筒和蛋挞的销量都会大幅增加,飓风、手电筒、蛋挞之间有着一种神奇的联系;利用价格调整软件,零售商可以在一小时内自动修改200万件商品的价格,这是基于竞争对手价格和销售额等因素的一种动态定价机制;澳大利亚数字户外广告公司通过安装在数字户外媒体上的受众测量设备来实时采集受众的信息,当测出此时的观看人为女性,后台中针对女性用户且给出最高广告费的广告将自动播放。
本书中提到的上述案例都是基于大数据的渠道、定价和广告创新。作为一本关于大数据营销的教科书,不同于以往教材中只有枯燥晦涩的理论,本书每一章节都配有生动的经典案例,范围涉及众多不同领域的领先公司,展示了诸如腾讯、IBM、沃尔玛等巨头公司在大数据营销中最具价值的应用案例。通过对这些案例的详尽分析,帮助读者更好地理解大数据营销的运作理念和方法。
那么,我们为什么要了解大数据?大数据究竟能给营销带来哪些变革?
信息技术的创新推动着思维模式的变革,大数据带来的信息风暴开启了营销模式的转型。麦肯锡全球研究院在五年前发布的一份研究报告《大数据:创新、竞争和生产力的下一个新领域》指出,数据已经渗透到当今每一个行业和业务职能领域,成为日益重要的生产因素;而人们对于海量数据的运用预示着新一波生产率增长和消费者盈余浪潮的到来。
对于市场营销来说,大数据可以帮助品牌发现机遇(新客户、新市场、新规律和新策略),回避风险和潜在威胁,同时也有助于品牌营销决策的调整与优化。因此,如何利用大数据技术实现更大的营销价值和效果,是值得不断思考和探索的领域。
本书作者阳翼十余年来潜心于营销领域,做了大量前瞻性的研究工作,有着丰富的理论功底和实践经验。不仅在传统营销领域颇有建树,对于大数据时代的新营销也有着独到的见解,在广告、市场、数字营销等方面提出了诸多有价值的观点。相信本书能为高校广告、营销专业的学生及相关研究人员、从业人士打开一扇洞察大数据营销的窗口,同时在变革思维方式、培养大数据思维等方面带来启迪。
大数据是创新2.0时代复杂性科学视野下的数据收集、管理、处理和利用。用户不仅是数据的使用者,更是数据的生产者。数据围绕人的生产、生活而产生,不再是实验室里的样本,而是广阔社会空间的全数据。大数据也为以用户为中心、实现从封闭的实验室创新到以社会为舞台的开放创新提供了新的机遇,也为基于大数据的社群营销提供了新的机遇。构建基于大数据的社群营销需要:
(1)挖掘需求。利用前期大数据预测或老客户优势,不断洞察到潜在用户群需求,进行挖掘和分析。
(2)社群口碑。确定用户画像和锁定品牌目标社群后,根据其社群画像细节制定创意表现,与受众及社群保持活动或互动沟通,最终达成有效链接和高效口碑。
(3)精准引流。根据数据模型和数据挖掘,选择合适的媒体效果投放平台或大数据交易平台,用精准广告或数据模型来影响目标受众,完成低成本高转化的信息精准触达。
(4)促进交易。基于商业形态,打造线上链接和线下交易模式。推动消费者的购买行为,最终达成销售目标,同时为品牌获取更真实的用户数据。
(5)闭环CRM。详实的交易数据进入 CRM 系统,根据 Social CRM 继续完善用户画像,为触发二次甚至多次消费,以及品牌的再营销做准备。
社群营销的目标不仅仅是品牌如何在社交媒体和社群上的发声,更重要的是从一开始的数据分析、用户引流到最后促进交易的过程。而其中活动、KOL、O2O 等互动数据留存和分析,通过大数据交易平台共享更多原始数据的共享,以及整合挖掘关联数据产品和数据预测,构建自己的SCRM 系统,实现价值数据和商业智能的不断提升,打造最低成本最高效果的大数据平台上的社群营销。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)