两者的区别如下:
一、主体不同
1、数据类型:它是计算机科学中具有相似行为的一类特定数据结构的数学模型,或是一种或多种语义相似的编程语言的数据类型。
2、数据结构:是计算机存储和组织数据的一种方式。数据结构是指一组具有一个或多个特定关系的数据元素。
二、特点不同
1、数据类型:它是一个数学约束,通过对通道的可执行 *** 作和这些 *** 作的影响间接定义通道。
2、数据结构:内容是构建复杂软件系统的基础,其核心技术是分解和抽象。
三、不同的功能
1、数据类型:定义一系列 *** 作(或直接调用的方法)和这些 *** 作的函数(它们做什么),但我们没有指定如何实现这些 *** 作(即不编写特定代码)。
2、数据结构:研究了数据的逻辑结构和数据的物理结构以及它们之间的关系,定义了相应的 *** 作答案,设计了相应的算法,并确保在这些 *** 作之后获得的新结构仍然保持原始结构类型。
参考资料来源:百度百科-数据结构
参考资料来源:百度百科-抽象数据结构
1 大数据专业课程有哪些
首先我们要了解Java语言和Linux *** 作系统,这两个是学习大数据的基础,学习的顺序不分前后。
Java :只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据。基础
Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。
好说完基础了,再说说还需要学习哪些大数据技术,可以按我写的顺序学下去。
Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapRece和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapRece是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。
记住学到这里可以作为你学大数据的一个节点。
Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。
Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。
Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。
Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapRece程序。有的人说Pig那它和Pig差不多掌握一个就可以了。
Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。
Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。
Kafka:这是个比较好用的队列工具,队列是干吗的排队买票你知道不数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。
Spark:它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以 *** 作它,因为它们都是用JVM的。
2 hadoop视频教程下载
其实这个课程讲的“微博”项目是《HBase in action》中的例子。其中的源代码都放在 github 上面。
3 请问哪位有《深入浅出Hadoop实战开发》的视频教程
Hadoop是什么,为什么要学习Hadoop
Hadoop是一个分布式系统基础架构,由Apache基金会开发。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力高速运算和存储。Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。HDFS有着高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上。而且它提供高传输率(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。HDFS放宽了(relax)POSIX的要求(requirements)这样可以流的形式访问(streaming access)文件系统中的数据。
Hadoop 是一个能够对大量数据进行分布式处理的软件框架。但是 Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。Hadoop 还是可伸缩的,能够处理 PB 级数据。此外,Hadoop 依赖于社区服务器,因此它的成本比较低,任何人都可以使用。
Hadoop带有用Java 语言编写的框架,因此运行在 Linux 生产平台上是非常理想的。本课程的讲解是采用linux平台进行模拟讲解,完全基于真实场景进行模拟现实
亮点一:技术点全面,体系完善
本课程在兼顾Hadoop课程知识体系完善的前提下,把实际开发中应用最多、最深、最实用的技术抽取出来,通过本课程,你将达到技术的新高点,进入云计算的美好世界。在技术方面你将彻底掌握基本的Hadoop集群;Hadoop HDFS原理;Hadoop HDFS基本的命令;Namenode的工作机制;HDFS基本配置管理;MapRece原理; HBase的系统架构;HBase的表结构;HBase如何使用MapRece;MapRece高级编程;split的实现详解;Hive入门;Hive结合MapRece;Hadoop的集群安装等众多知识点。
亮点二:基础+实战=应用,兼顾学与练
课程每阶段都安排了实战应用项目,以此方便学生能更快的掌握知识点的应用,如在第一阶段,课程结合HDFS应用,讲解了服务器的设计、以及如何利用Java API去对HDFS *** 作、在第二阶段;课程结合HBase实现微博项目的各种功能,使学员可以活学活用。在第三阶段:HBase和MapRece结合时下了实现话单查询与统计系统,在第四阶段,Hive实战部分,通过实战数据统计系统,使学员在最短的时间内掌握Hive的高级应用。
亮点三:讲师丰富的电信集团云平台运作经验
讲师robby拥有丰富的电信集团工作经验,目前负责云平台的各方面工作,并拥有多年的企业内部培训经验。讲课内容完全贴近企业需求,绝不纸上谈兵。
更多技术亮点参考课程大纲:(本大纲以章节形式命名要为防止某些章节1章节内容超过1课时)
第1章节:
> Hadoop背景
> HDFS设计目标
> HDFS不适合的场景
> HDFS架构详尽分析
> MapRece的基本原理
第2章节
> Hadoop的版本介绍
> 安装单机版Hadoop
> 安装Hadoop集群
第3章节
> HDFS命令行基本 *** 作
> Namenode的工作机制
> HDFS基本配置管理
第4章节
> HDFS应用实战:服务器(1) - 系统设计
> 应用的环境搭建 php + bootstrap + java
> 使用Hadoop Java API实现向HDFS写入文件
第5章节
> HDFS应用实战:服务器(2)
> 使用Hadoop Java API实现读取HDFS中的文件
> 使用Hadoop Java API实现获取HDFS目录列表
> 使用Hadoop Java API实现删除HDFS中的文件
第6章节
> MapRece的基本原理
> MapRece的运行过程
> 搭建MapRece的java开发环境
> 使用MapRece的java接口实现WordCount
第7章节
> WordCount运算过程分析
> MapRece的biner
> 使用MapRece实现数据去重
> 使用MapRece实现数据排序
> 使用MapRece实现数据平均成绩计算
第8章节
> HBase详细介绍
> HBase的系统架构
> HBase的表结构,RowKey,列族和时间戳
> HBase中的Master,Region以及Region Server
第9章节
> 使用HBase实现微博应用(1)
> 用户注册,登陆和注销的设计
> 搭建环境 struts2 + jsp + bootstrap + jquery + HBase Java API
> HBase和用户相关的表结构设计
> 用户注册的实现
第10章节
> 使用HBase实现微博应用(2)
> 使用session实现用户登录和注销
> “关注"功能的设计
> “关注"功能的表结构设计
> “关注"功能的实现
第11章节
> 使用HBase实现微博应用(3)
> “发微博"功能的设计
> “发微博"功能的表结构设计
> “发微博"功能的实现
> 展现整个应用的运行
第12章节
> HBase与MapRece介绍
> HBase如何使用MapRece
第13章节
> HBase应用实战:话单查询与统计(1)
> 应用的整体设计
> 开发环境搭建
> 表结构设计
第14章节
> HBase应用实战:话单查询与统计(2)
> 话单入库单设计与实现
> 话单查询的设计与实现
第15章节
> HBase应用实战:话单查询与统计(3)
> 统计功能设计
> 统计功能实现
第16章节
> 深入MapRece(1)
> split的实现详解
> 自定义输入的实现
> 实例讲解
第17章节
> 深入MapRece(2)
> Rece的partition
> 实例讲解
第18章节
> Hive入门
> 安装Hive
> 使用Hive向HDFS存入结构化数据
> Hive的基本使用
第19章节
> 使用MySql作为Hive的元数据库
> Hive结合MapRece
第20章节
> Hive应用实战:数据统计(1)
> 应用设计,表结构设计
第21章节
> Hive应用实战:数据统计(2)
> 数据录入与统计的实现
4 哪个课程题库有hadoop的题
这是在一个平衡Hadoop集群中,为数据节点/任务追踪器提供的规格:
在一个磁盘阵列中要有12到24个1~4TB硬盘
2个频率为2~25GHz的四核、六核或八核CPU
64~512GB的内存
有保障的千兆或万兆以太网(存储密度越大,需要的网络吞吐量越高)
名字节点角色负责协调集群上的数据存储,作业追踪器协调数据处理(备用的名字节点不应与集群中的名字节点共存,并且运行在与之相同的硬件环境上。)。Cloudera客户购买在RAID1或10配置上有足够功率和级磁盘数的商用机器来运行名字节点和作业追踪器。
NameNode也会直接需要与群集中的数据块的数量成比列的RAM。一个好的但不精确的规则是对于存储在分布式文件系统里面的每一个1百万的数据块,分配1GB的NameNode内存。于在一个群集里面的100个DataNodes而言,NameNode上的64GB的RAM提供了足够的空间来保证群集的增长。我们也把HA同时配置在NameNode和JobTracker上,
这里就是为NameNode/JobTracker/Standby NameNode节点群的技术细节。驱动器的数量或多或少,将取决于冗余数量的需要。
4–6 1TB 硬盘驱动器 采用 一个 JBOD 配置 (1个用于OS, 2个用于文件系统映像[RAID 1], 1个用于Apache ZooKeeper, 1个用于Journal节点)
2 4-/16-/8-核心 CPUs, 至少运行于 2-25GHz
64-128GB 随机存储器
Bonded Gigabit 以太网卡 or 10Gigabit 以太网卡
记住, 在思想上,Hadoop 体系设计为用于一种并行环境。
5 大数据的课程都有哪些
大数据本身属于交叉学科,涵盖计算机、统计学、数学三个学科的专业知识。所以大数据的课程内容,基本上也是围绕着三个学科展开的。
数理统计方面:数学分析、统计学习、高等代数、离散数学、概率与统计等课程是基本配置。
计算机专业课程:数据结构、数据科学、程序设计、算法分析与设计、数据计算智能、数据库系统、计算机系统基础、并行体系结构与编程、非结构化大数据分析等,也是必备课程。
而想要真正找到工作的话,大数据主流技术框架,也要去补充起来,这才是找工作当中能够获得竞争力的加分项。
6 hadoop 集群教程
要教程?不明白你这个啥意思
7 有哪些好的hadoop学习资料
1"HadoopOperationspdfzip"//vdiskweibo/s/vDOQs6xMAQH62
2"Hadoop权威指南(中文版)(带书签)pdf"Hadoop权威指南(中文版)(带书签)pdf
3"[Hadoop权威指南(第2版)]pdf"[Hadoop权威指南(第2版)]pdf
4"hadoop权威指南第3版2012rar"hadoop权威指南第3版2012rar
5《Hadoop技术内幕:深入解析HadoopCommon和HDFSpdf"《Hadoop技术内幕:深入解析Hadoop Common和HDFSpdf
6"Hadoop技术内幕:深入解析MapRece架构设计与实现原理pdf"Hadoop技术内幕:深入解析MapRece架构设计与实现原理pdf
7"Hadoop实战pdf"Hadoop实战pdf
8"Hadoop实战-陆嘉恒(高清完整版)pdf"Hadoop实战-陆嘉恒(高清完整版)pdf
9"Hadoop实战(第2版)pdf"Hadoop实战(第2版)pdf
10"HadoopinActionpdf"Hadoop in Actionpdf
11"Hadoop in practicepdf"Hadoop in practicepdf
12"HadoopTheDefinitiveGuide,3Edpdf"Hadoop TheDefinitiveGuide,3Edpdf
13"O'ReillyHadoopTheDefinitiveGuide3rdEditionMay2012pdf"O'ReillyHadoopTheDefinitiveGuide3rdEditionMay2012pdf
14"hadoop入门实战手册pdf"hadoop入门实战手册pdf
15"Hadoop入门手册chm"Hadoop入门手册chm
16"windows下配置cygwin、hadoop等并运行maprece及maprece程序讲解doc"windows下配置cygwin、hadoop等并运行maprece及maprece程序讲解doc
17"在Windows上安装Hadoop教程pdf"在Windows上安装Hadoop教程pdf
18"Hadoop源代码分析(完整版)pdf"Hadoop源代码分析(完整版)pdf
19"hadoop-apiCHM"hadoop-apiCHM
20"HBase-Hadoop@小米pptx" HBase-Hadoop@小米pptx
21"但彬-Hadoop平台的大数据整合pdf"但彬-Hadoop平台的大数据整合pdf
22"QCon2013-罗李-Hadoop在阿里pdf"QCon2013-罗李
23"网络hadoop计算技术发展pdf"网络hadoop计算技术发展pdf
24"QCon-吴威-基于Hadoop的海量数据平台pdf"QCon-吴威-基于Hadoop的海量数据平台pdf
25"8步安装好你的hadoopdocx"8步安装好你的hadoopdocx
26"hadoop运维经验分享ppsx"hadoop运维经验分享ppsx
27"PPT集萃:20位Hadoop专家分享大数据技术工具与最佳实践rar"PPT集萃:20位Hadoop专家分享大数据技术工具与最佳实践rar
28"Hadoop20基本架构和发展趋势pdf"Hadoop 20基本架构和发展趋势pdf
29"Hadoop与大数据技术大会PPT资料rar"Hadoop与大数据技术大会PPT资料rar
30"Hadoop2011云计算大会rar"Hadoop2011云计算大会rar
何谓数据结构
数据结构是在整个计算机科学与技术领域上广泛被使用的术语。它用来反映一个数据的内部构成,即一个数据由那些成分数据构成,以什么方式构成,呈什么结构。数据结构有逻辑上的数据结构和物理上的数据结构之分。逻辑上的数据结构反映成分数据之间的逻辑关系,而物理上的数据结构反映成分数据在计算机内部的存储安排。数据结构是数据存在的形式。 数据结构是信息的一种组织方式,其目的是为了提高算法的效率,它通常与一组算法的集合相对应,通过这组算法集合可以对数据结构中的数据进行某种 *** 作。
数据结构主要研究什么?
数据结构作为一门学科主要研究数据的各种逻辑结构和存储结构,以及对数据的各种 *** 作。因此,主要有三个方面的内容:数据的逻辑结构;数据的物理存储结构;对数据的 *** 作(或算法)。通常,算法的
设计取决于数据的逻辑结构,算法的实现取决于数据的物理存储结构。
什么是数据结构?什么是逻辑结构和物理结构?
数据是指由有限的符号(比如,"0"和"1",具有其自己的结构、 *** 作、和相应的语义)组成的元素的集合。结构是元素之间的关系的集合。通常来说,一个数据结构DS 可以表示为一个二元组:
DS=(D,S), //ie, data-structure=(data-part,logic-structure-part) 这里D是数据元素的集合(或者是“结点”,可能还含有“数据项”或“数据域”),S是定义在D(或其他集合)上的关系的集合,S = { R | R : D×D×},称之为元素的逻辑结构。 逻辑结构有四种基本类型:集合结构、线性结构、树状结构和网络结构。表和树是最常用的两种高效数据结构,许多高效的算法可以用这两种数据结构来设计实现。表是线性结构的(全序关系),树(偏序或层次关系)和图(局部有序(weak/local orders))是非线性结构。
数据结构的物理结构是指逻辑结构的存储镜像(image)。数据结构 DS 的物理结构 P对应于从 DS 的数据元素到存储区M(维护着逻辑结构S)的一个映射:
(PD,S) -- > M 存储器模型:一个存储器 M 是一系列固定大小的存储单元,每个单元 U 有一个唯一的地址 A(U),该地址被连续地编码。每个单元 U 有一个唯一的后继单元 U'=succ(U)。 P 的四种基本映射模型:顺序(sequential)、链接(linked)、索引(indexed)和散列(hashing)映射。
因此,我们至少可以得到4×4种可能的物理数据结构:
sequential (sets)
linked lists
indexed trees
hash graphs
(并不是所有的可能组合都合理)
数据结构DS上的 *** 作:所有的定义在DS上的 *** 作在改变数据元素(节点)或节点的域时必须保持DS的逻辑和物理结构。
DS上的基本 *** 作:任何其他对DS的高级 *** 作都可以用这些基本 *** 作来实现。最好将DS和他的所有基本 *** 作看作一个整体——称之为模块。我们可以进一步将该模块抽象为数据类型(其中DS的存储结构被表示为私有成员,基本 *** 作被表示为公共方法),称之为ADT。作为ADT,堆栈和队列都是一种特殊的表,他们拥有表的 *** 作的子集。 对于DATs的高级 *** 作可以被设计为(不封装的)算法,利用基本 *** 作对DS进行处理。
好的和坏的DS:如果一个DS可以通过某种“线性规则”被转化为线性的DS(例如线性表),则称它为好的DS。好的DS通常对应于好的(高效的)算法。这是由计算机的计算能力决定的,因为计算机本质上只能存取逻辑连续的内存单元,因此如何没有线性化的结构逻辑上是不可计算的。比如对一个图进行 *** 作,要访问图的所有结点,则必须按照某种顺序来依次访问所有节点(要形成一个偏序),必须通过某种方式将图固有的非线性结构转化为线性结构才能对图进行 *** 作。
树是好的DS——它有非常简单而高效的线性化规则,因此可以利用树设计出许多非常高效的算法。树的实现和使用都很简单,但可以解决大量特殊的复杂问题,因此树是实际编程中最重要和最有用的一种数据结构。树的结构本质上有递归的性质——每一个叶节点可以被一棵子树所替代,反之亦然。实际上,每一种递归的结构都可以被转化为(或等价于)树形结构。
从机器语言到高级语言的抽象
我们知道,算法被定义为一个运算序列。这个运算序列中的所有运算定义在一类特定的数据模型上,并以解决一类特定问题为目标。这个运算序列应该具备下列四个特征。 有限性,即序列的项数有限,且每一运算项都可在有限的时间内完成;确定性,即序列的每一项运算都有明确的定义,无二义性;可以没有输入运算项,但一定要有输出运算项;可行性,即对于任意给定的合法的输入都能得到相应的正确的输出。这些特征可以用来判别一个确定的运算序列是否称得上是一个算法。 但是,我们现在的问题不是要判别一个确定的运算序列是否称得上是一个算法,而是要对一个己经称得上是算法的运算序列,回顾我们曾经如何用程序设计语言去表达它。
算法的程序表达,归根到底是算法要素的程序表达,因为一旦算法的每一项要素都用程序清楚地表达,整个算法的程序表达也就不成问题。
作为运算序列的算法,有三个要素。 作为运算序列中各种运算的运算对象和运算结果的数据;运算序列中的各种运算;运算序列中的控制转移。这三种要素依序分别简称为数据、运算和控制。 由于算法层出不穷,变化万千,其中的运算所作用的对象数据和所得到的结果数据名目繁多,不胜枚举。最简单最基本的有布尔值数据、字符数据、整数和实数数据等;稍复杂的有向量、矩阵、记录等数据;更复杂的有集合、树和图,还有声音、图形、图像等数据。 同样由于算法层出不穷,变化万千,其中运算的种类五花八门、多姿多彩。最基本最初等的有赋值运算、算术运算、逻辑运算和关系运算等;稍复杂的有算术表达式和逻辑表达式等;更复杂的有函数值计算、向量运算、矩阵运算、集合运算,以及表、栈、队列、树和图上的运算等:此外,还可能有以上列举的运算的复合和嵌套。 关于控制转移,相对单纯。在串行计算中,它只有顺序、分支、循环、递归和无条件转移等几种。
我们来回顾一下,自从计算机问世以来,算法的上述三要素的程序表达,经历过一个怎样的过程。
最早的程序设计语言是机器语言,即具体的计算机上的一个指令集。当时,要在计算机上运行的所有算法都必须直接用机器语言来表达,计算机才能接受。算法的运算序列包括运算对象和运算结果都必须转换为指令序列。其中的每一条指令都以编码(指令码和地址码)的形式出现。与算法语言表达的算法,相差十万八千里。对于没受过程序设计专门训练的人来说,一份程序恰似一份"天书",让人看了不知所云,可读性
极差。
用机器语言表达算法的运算、数据和控制十分繁杂琐碎,因为机器语言所提供的指令太初等、原始。机器语言只接受算术运算、按位逻辑运算和数的大小比较运算等。对于稍复杂的运算,都必须一一分解,直到到达最初等的运算才能用相应的指令替代之。机器语言能直接表达的数据只有最原始的位、字节、和字三种。算法中即使是最简单的数据如布尔值、字符、整数、和实数,也必须一一地映射到位、字节和字
中,还得一一分配它们的存储单元。对于算法中有结构的数据的表达则要麻烦得多。机器语言所提供的控制转移指令也只有无条件转移、条件转移、进入子程序和从子程序返回等最基本的几种。用它们来构造循环、形成分支、调用函数和过程得事先做许多的准备,还得靠许多的技巧。 直接用机器语言表达算法有许多缺点。
大量繁杂琐碎的细节牵制着程序员,使他们不可能有更多的时间和精力去从事创造性的劳动,执行对他们来说更为重要的任务。如确保程序的正确性、高效性。程序员既要驾驭程序设计的全局又要深入每一个局部直到实现的细节,即使智力超群的程序员也常常会顾此失彼,屡出差错,因而所编出的程序可靠性差,且开发周期长。 由于用机器语言进行程序设计的思维和表达方式与人们的习惯大相径庭,只有经过
较长时间职业训练的程序员才能胜任,使得程序设计曲高和寡。因为它的书面形式全是"密"码,所以可读性差,不便于交流与合作。因为它严重地依赖于具体的计算机,所以可移植性差,重用性差。这些弊端造成当时的计算机应用未能迅速得到推广。
克服上述缺点的出路在于程序设计语言的抽象,让它尽可能地接近于算法语言。 为此,人们首先注意到的是可读性和可移植性,因为它们相对地容易通过抽象而得到改善。于是,很快就出现汇编语言。这种语言对机器语言的抽象,首先表现在将机器语言的每一条指令符号化:指令码代之以记忆符号,地址码代之以符号地址,使得其含义显现在符号上而不再隐藏在编码中,可让人望"文"生义。其次表现在这种语言摆脱了具体计算机的限制,可在不同指令集的计算机上运行,只要该计算机配上汇编语言的一个汇编程序。这无疑是机器语言朝算法语言靠拢迈出的一步。但是,它离算法语言还太远,以致程序员还不能从分解算法的数据、运算和控制到汇编才能直接表达的指令等繁杂琐碎的事务中解脱出来。 到了50年代中期,出现程序设计的高级语言如Fortran,Algol60,以及后来的PL/l, Pascal等,算法的程序表达才产生一次大的飞跃。
诚然,算法最终要表达为具体计算机上的机器语言才能在该计算机上运行,得到所需要的结果。但汇编语言的实践启发人们,表达成机器语言不必一步到位,可以分两步走或者可以筑桥过河。即先表达成一种中介语言,然后转成机器语言。汇编语言作为一种中介语言,并没有获得很大成功,原因是它离算法语
言还太远。这便指引人们去设计一种尽量接近算法语言的规范语言,即所谓的高级语言,让程序员可以用它方便地表达算法,然后借助于规范的高级语言到规范的机器语言的"翻译",最终将算法表达为机器语言。而且,由于高级语言和机器语言都具有规范性,这里的"翻译"完全可以机械化地由计算机来完成,就像汇编语言被翻译成机器语言一样,只要计算机配上一个编译程序。 上述两步,前一步由程序员去完成,后一步可以由编译程序去完成。在规定清楚它们各自该做什么之后,这两步是完全独立的。它们各自该如何做互不相干。前一步要做的只是用高级语言正确地表达给定的算法,产生一个高级语言程序;后一步要做的只是将第一步得到的高级语言程序翻译成机器语言程序。至于程序员如何用高级语言表达算法和编译程序如何将高级语言表达的算法翻译成机器语言表达的算法,显然毫不相干。
处理从算法语言最终表达成机器语言这一复杂过程的上述思想方法就是一种抽象。汇编语言和高级语言的出现都是这种抽象的范例。 与汇编语言相比,高级语言的巨大成功在于它在数据、运算和控制三方
面的表达中引入许多接近算法语言的概念和工具,大大地提高抽象地表达算法的能力。 在运算方面,高级语言如Pascal,除允许原封不动地运用算法语言的四则运算、逻辑运算、关系运算、算术表达式、逻辑表达式外,还引入强有力的函数与过程的工具,并让用户自定义。这一工具的重要性不仅在于它精简了重复的程序文本段,而且在于它反映出程序的两级抽象。
在函数与过程调用级,人们只关心它能做什么,不必关心它如何做。只是到函数与过程的定义时,人们才给出如何做的细节。用过高级语言的读者都知道,一旦函数与过程的名称、参数和功能被规定清楚,那么,在程序中调用它们便与在程序的头部说明它们完全分开。你可以修改甚至更换函数体与过程体,而不影响它们的被调用。如果把函数与过程名看成是运算名,把参数看成是运算的对象或运算的结果,那么
,函数与过程的调用和初等运算的引用没有两样。利用函数和过程以及它们的复合或嵌套可以很自然地表达算法语言中任何复杂的运算。
在数据方面,高级语言如Pascal引人了数据类型的概念,即把所有的数据加以分类。每一个数据(包括表达式)或每一个数据变量都属于其中确定的一类。称这一类数据为一个数据类型。 因此,数据类型是数据或数据变量类属的说明,它指示该数据或数据变量可能取的值的全体。对于无结构的数据,高级语言如Pascal,除提供标准的基本数据类型--布尔型、字符型、整型和实型外,还提供用户可自定义的枚举类、子界类型和指针类型。这些类型(除指针外),其使用方式都顺应人们在算法语言中使用的习惯。对于有结构的数据,高级语言如Pascal,提供了数组、记录、有限制的集合和文件等四种标准的结构数据类型。其中,数组是科学计算中的向量、矩阵的抽象;记录是商业和管理中的记录的抽象;有限制的集合是数学中足够小的集合的势集的抽象;文件是诸如磁盘等外存储数据的抽象。
人们可以利用所提供的基本数据类型(包括标准的和自定义的),按数组、记录、有限制的集合和文件的构造规则构造有结构的数据。 此外,还允许用户利用标准的结构数据类型,通过复合或嵌套构造更复杂更高层的结构数据。这使得高级语言中的数据类型呈明显的分层。 高级语言中数据类型的分层是没有穷尽的,因而用它们可以表达算法语言中任何复杂层次的数据。 在控制方面,高级语言如Pascal,提供了表达算法控制转移的六种方式。
(1)缺省的顺序控制";"。
(2)条件(分支)控制:"if表达式(为真)then S1 else S2;" 。
(3)选择(情况)控制:
"Case 表达式 of
值1: S1
值2: S2
值n: Sn
end"
(4)循环控制:
"while 表达式(为真) do S;" 或
"repeat S until 表达式(为真);" 或
"for变量名:=初值 to/downto 终值do S;"
(5)函数和过程的调用,包括递归函数和递归过程的调用。
(6)无条件转移goto。
这六种表达方式不仅覆盖了算法语言中所有控制表达的要求,而且不再像机器语言或汇编语言那样原始、那样繁琐、那样隐晦,而是如上面所看到的,与自然语言的表达相差无几。 程序设计语言从机器语言到高级语言的抽象,带来的主要好处是: 高级语言接近算法语言,易学、易掌握,一般工程技术人员只要几周时间的培训就可以胜任程序员的工作;高级语言为程序员提供了结构化程序设计的环境和工具,使得设计出来的程序可读性好,可维护性强,可靠性高;高级语言远离机器语言,与具体的计算机硬件关系不大,因而所写出来的程序可移植性好,重用率高; 由于把繁杂琐碎的事务交给了编译程序去做,所以自动化程度高,开发周期短,且程、序员得到解脱,可以集中时间和精力去从事对于他们来说更为重要的创造性劳动,以提高、程序的质量。
数据结构、数据类型和抽象数据类型
数据结构、数据类型和抽象数据类型,这三个术语在字面上既不同又相近,反映出它们在含义上既有区别又有联系。
数据结构是在整个计算机科学与技术领域上广泛被使用的术语。它用来反映一个数据的内部构成,即一个数据由哪些成分数据构成,以什么方式构成,呈什么结构。数据结构有逻辑上的数据结构和物理上的数据结构之分。逻辑上的数据结构反映成分数据之间的逻辑关系,物理上的数据结构反映成分数据在计算机内的存储安排。数据结构是数据存在的形式。
数据是按照数据结构分类的,具有相同数据结构的数据属同一类。同一类数据的全体称为一个数据类型。在程序设计高级语言中,数据类型用来说明一个数据在数据分类中的归属。它是数据的一种属性。这个属性限定了该数据的变化范围。为了解题的需要,根据数据结构的种类,高级语言定义了一系列的数据类型。不同的高级语言所定义的数据类型不尽相同。Pascal语言所定义的数据类型的种类。
其中,简单数据类型对应于简单的数据结构;构造数据类型对应于复杂的数据结构;在复杂的数据结构里,允许成分数据本身具有复杂的数据结构,因而,构造数据类型允许复合嵌套;指针类型对应于数据结构中成分数据之间的关系,表面上属简单数据类型,实际上都指向复杂的成分数据即构造数据类型中的数据,因此这里没有把它划入简单数据类型,也没有划入构造数据类型,而单独划出一类。
数据结构反映数据内部的构成方式,它常常用一个结构图来描述:数据中的每一项成分数据被看作一个结点,并用方框或圆圈表示,成分数据之间的关系用相应的结点之间带箭号的连线表示。如果成分数据本身又有它自身的结构,则结构出现嵌套。这里嵌套还允许是递归的嵌套。
由于指针数据的引入,使构造各种复杂的数据结构成为可能。按数据结构中的成分数据之间的关系,数据结构有线性与非线性之分。在非线性数据结构中又有层次与网状之分。 由于数据类型是按照数据结构划分的,因此,一类数据结构对应着一种数据类型。数据类型按照该类型中的数据所呈现的结构也有线性与非线性之分,层次与网状之分。一个数据变量,在高级语言中的类型说明必须是读变量所具有的数据结构所对应的数据类型。最常用的数据结构是数组结构和记录结构。数组结构的特点是:
成分数据的个数固定,它们之间的逻辑关系由成分数据的序号(或叫数组的下标)来体现。这些成分数据按照序号的先后顺序一个挨一个地排列起来。每一个成分数据具有相同的结构(可以是简单结构,也可以是复杂结构),因而属于同一个数据类型(相应地是简单数据类型或构造数据类型)。这种同一的数据类型称为基类型。所有的成分数据被依序安排在一片连续的存储单元中。 概括起来,数组结构是一个线性的、均匀的、其成分数据可随机访问的结构。
由于这、种结构有这些良好的特性,所以最常被人们所采用。在高级语言中,与数组结构相对应的、数据类型是数组类型,即数组结构的数据变量必须说明为array [i] of T0 ,其中i是数组、结构的下标类型,而T0是数组结构的基类型。 记录结构是另一种常用的数据结构。它的特点是:与数组结构一样,成分数据的个数固定。但成分数据之间没有自然序,它们处于平等地位。每一个成分数据被称为一个域并赋予域名。不同的域有不同的域名。不同的域允许有不同的结构,因而允许属于不同的数据类型。与数组结构一样,它们可以随机访问,但访问的途径靠的是域名。在高级语言中记录结构对应的数据类型是记录类型。记录结构的数据的变量必须说明为记录类型。
抽象数据类型的含义在上一段已作了专门叙述。它可理解为数据类型的进一步抽象。即把数据类型和数据类型上的运算捆在一起,进行封装。引入抽象数据类型的目的是把数据类型的表示和数据类型上运算的实现与这些数据类型和运算在程序中的引用隔开,使它们相互独立。对于抽象数据类型的描述,除了必须描述它的数据结构外,还必须描述定义在它上面的运算(过程或函数)。抽象数据类型上定义的过程和函
数以该抽象数据类型的数据所应具有的数据结构为基础。
泛型设计和数据结构与算法
下面我想再说说关于泛型程序设计模型对于数据结构和算法方面的最新推动,泛型思想已经把数据结
构和算法方面的基本思想抽象到了一个前所未有的高度,现在有多种程序设计语言支持泛型设计,比如
ADA,C++,而且据说在JAVA的下一版本和C#中也将对泛型设计进行全面的支持。
先说说泛型设计的基本思想:泛型编程(generic programming,以下直接以GP称呼)是一种全新的程序设计思想,和OO,OB,PO这些为人所熟知的程序设计想法不同的是GP抽象度更高,基于GP设计的组件之间偶合度底,没有继承关系,所以其组件间的互交性和扩展性都非常高。我们都知道,任何算法都是作用在一种特定的数据结构上的,最简单的例子就是快速排序算法最根本的实现条件就是所排序的对象是存
贮在数组里面,因为快速排序就是因为要用到数组的随机存储特性,即可以在单位时间内交换远距离的对象,而不只是相临的两个对象,而如果用联表去存储对象,由于在联表中取得对象的时间是线性的既O[n],这样将使快速排序失去其快速的特点。也就是说,我们在设计一种算法的时候,我们总是先要考虑其应用的数据结构,比如数组查找,联表查找,树查找,图查找其核心都是查找,但因为作用的数据结构不同
将有多种不同的表现形式。数据结构和算法之间这样密切的关系一直是我们以前的认识。泛型设计的根本思想就是想把算法和其作用的数据结构分离,也就是说,我们设计算法的时候并不去考虑我们设计的算法将作用于何种数据结构之上。泛型设计的理想状态是一个查找算法将可以作用于数组,联表,树,图等各种数据结构之上,变成一个通用的,泛型的算法。这样的理想是不是很诱惑人?
泛型编程带来的是前所未有的d性以及不会损失效率的抽象性,GP和OO不同,它不要求你通过额外的间接层来调用函数:它让你撰写完全一般化并可重复使用的算法,其效率与针对特定数据结构而设计的算法旗鼓相当。我们大家都知道数据结构在C++中可以用用户定义类型来表示,而C++中的模板技术就是以类型作为参数,那么我可以想象利用模板技术可以实现我们开始的GP思想,即一个模板函数可以对于各种传递进来的类型起作用,而这些类型就可以是我们定义的各种数据结构。
泛型算法抽离于特定类型和特定数据结构之外,使得其适应与尽可能的一般化类型,算法本身只是为了实现算法其需要表达的逻辑本质而不去被为各种数据结构的实现细节所干扰。这意味着一个泛型算法实际具有两部分。1,用来描叙算法本质逻辑的实际指令;2,正确指定其参数类型必须满足的性质的一组需求条件。到此,相信有不少人已经开始糊涂了,呵呵,不要紧。毕竟GP是一种抽象度非常高的程序设计思想,里面的核心就是抽象条件成为成为程序设计过程中的核心,从而取代了类型这在OO里面的核心地位,正是因为类型不在是我们考虑的重点,类型成为了抽象条件的外衣,所以我们称这样的程序思想为泛型思想------把类型泛化。
数据库是一种应用软件,用来存放各种数据的。
数据结构是计算机存储、组织数据的方式。
数据库是程序写出来的,而程序=数据结构+算法。
不知道能不能明白,简单的说数据结构是计算机的根本基础,因为计算机就是用来处理各种数据的,在计算机的世界里,所有的东东都叫数据,而数据结构正是用来表示计算机存储、组织数据的方式。
下面是官方的说法:
-------------------------------------------------------------------------------------------------------------
选择了数据结构,算法也随之确定,是数据而不是算法是系统构造的关键因素。这种洞见导致了许多种软件设计方法和程序设计语言的出现,面向对象的程序设计语言就是其中之一。
一般认为,一个数据结构是由数据元素依据某种逻辑联系组织起来的。对数据元素间逻辑关系的描述称为数据的逻辑结构;数据必须在计算机内存储,数据的存储结构是数据结构的实现形式,是其在计算机内的表示;此外讨论一个数据结构必须同时讨论在该类数据上执行的运算才有意义。
在许多类型的程序的设计中,数据结构的选择是一个基本的设计考虑因素。许多大型系统的构造经验表明,系统实现的困难程度和系统构造的质量都严重的依赖于是否选择了最优的数据结构。许多时候,确定了数据结构后,算法就容易得到了。有些时候事情也会反过来,我们根据特定算法来选择数据结构与之适应。不论哪种情况,选择合适的数据结构都是非常重要的。
题目和代码没什么联系啊!
题目:
1通过键盘输入各学生的多门课程的成绩,建立相应的文件inputdat
2对文件inputdat中的数据进行处理,要求具有如下功能:
a按各门课程成绩排序,并生成相应的文件输出
b计算每人的平均成绩,按平均成绩排序,并生成文件
c求出各门课程的平均成绩、最高分、最低分、不及格人数、
60-69分人数、70-79分人数、80-89分人数、90分以上人数
d根据姓名或学号查询某人的各门课成绩,重名也要能处理
--------构造数据结构包括:ID、人名、各科分数、平均分、总分等等,用链表存数据。至于读写文件和排序都很好解决,重名的话使用ID就没有这个问题了
#include "stdioh"
#include "malloch"
struct node
{
char data;
struct node lchild,rchild;
}bnode;
typedef struct node blink;//!!!!!!!!!!!!!!!!!!
//这里相当于申明了一个新的数据类型blink
//blink 就等价于 struct node (这里要注意和#define的区别)
blink creat( )//创建二叉树
{
blink bt;
char ch;
ch=getchar();
if (ch!='#')//这里是输入结束符,也是循环终止标示。
{
bt=malloc(sizeof(bnode));
bt->data=ch;bt->lchild=creat();
bt->rchild=creat();
}
else
bt=NULL;
return bt;
}
void preorder(blink bt)//先序遍历树
{
if(bt)
{
printf("%c",bt->data);
preorder(bt->lchild);
preorder(bt->rchild);
}
}
void inorder(blink bt)//中序遍历
{
if(bt)
{
inorder(bt->lchild);
printf("%c",bt->data);
inorder(bt->rchild);
}
}
void postorder(blink bt)//后序遍历
{
if(bt)
{
postorder(bt->lchild);
postorder(bt->rchild);
printf("%c",bt->data);
}
}
int max(int x,int y)//这个就不说了
{
if(x>y)
return x;
else
return y;
}
int depth(blink bt)//计算深度
{
if(bt)
return 1+max(depth(bt->lchild),depth(bt->rchild));
else
return 0;
}
以上就是关于描述数据结构的概念与程序设计语言中数据类型概念的区别全部的内容,包括:描述数据结构的概念与程序设计语言中数据类型概念的区别、hadoop课程设计、数据结构等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)