#include <reg51H>
#define uint unsigned int
#define uchar unsigned char
#define Alarm_Value 30 //温度报警值
sbit rs = P2^0;
sbit lcdcs = P2^2;
sbit buzzer = P3^4; //蜂鸣器报警
sbit OUT = P3^5; //光的检测
sbit DQ = P3^7; //温度传送数据IO口
uchar TempBuffer[8];
uint temp_value; //温度值
light_flag=1; //标志位
uchar value1[]=;
uchar value2[]=;
uchar value3[]=;
uchar value4[]=;
/ds18b20子程序/
/ds18b20延迟子函数(晶振12MHz )/
void delay_18B20(unsigned int i)
{
while(i--);
}
/ds18b20初始化函数/
void Init_DS18B20(void)
{
unsigned char x=0;
DQ = 1;
delay_18B20(8);
DQ = 0;
delay_18B20(80);
DQ = 1;
delay_18B20(14);
x=DQ;
delay_18B20(20);
}
/ds18b20读一个字节/
unsigned char ReadOneChar(void)
{
uchar i=0;
uchar dat = 0;
for (i=8;i>0;i--)
{
DQ = 0; // 给脉冲信号
dat>>=1;
DQ = 1; // 给脉冲信号
if(DQ)
dat|=0x80; //先读入低字节
delay_18B20(4);
}
return(dat);
}
/ds18b20写一个字节/
void WriteOneChar(uchar dat)
{
unsigned char i=0;
for (i=8; i>0; i--)
{
DQ = 0;
DQ = dat&0x01;
delay_18B20(5);
DQ = 1;
dat>>=1;
}
}
/读取ds18b20当前温度/
void ReadTemp(void)
{
unsigned char a=0;
unsigned char b=0;
unsigned char t=0;
float tt;
Init_DS18B20();
WriteOneChar(0xCC); //Skip ROM command
WriteOneChar(0x44); //启动DS18B20进行温度转换
delay_18B20(100);
Init_DS18B20();
WriteOneChar(0xCC); //Skip ROM command
WriteOneChar(0xBE); // 读暂存器9个字节内容
delay_18B20(100);
a=ReadOneChar(); //读温度值低位
b=ReadOneChar(); //读温度值高位
temp_value=b;
temp_value<<=8;
temp_value=temp_value|a;
tt=temp_value00625;
temp_value=tt100+05; /经典:处理保留几位小数(此列为2位);/
}
/温度值转换为字符串/
void temp_to_str()
{
TempBuffer[0]=temp_value/1000+'0'; //十位
TempBuffer[1]=temp_value%1000/100+'0'; //个位
TempBuffer[2]=''; //小数点
TempBuffer[3]=temp_value%1000%100/10+'0'; //小数点后一位
TempBuffer[4]=temp_value%1000%100%10+'0'; //小数点后二位
TempBuffer[5]=0xdf; //温度符号
TempBuffer[6]='C';
TempBuffer[7]='\0';
}
void delay(uint ms)
{
uint i,j;
for (j=0;j<ms;j++)
for (i=0;i<120;i++);
}
Check_light()
{
if(out==0)
{
light_flag=1;
}
else
{
light_flag=0;
}
}
/1602显示开始 /
void write_command(uchar command)
{
rs=0;
P0=command;
lcdcs=1;
lcdcs=0;
}
void write_data(uchar data0)
{
rs=1;
P0=data0;
lcdcs=1;
lcdcs=0;
}
void init_1602()
{
delay(15);
write_command(0x38);
delay(5);
write_command(0x0c);
delay(5);
write_command(0x06);
delay(5);
}
/1602显示结束
void show()
{
uchar i;
init_1602(); //初始化lcd
write_command(0x80); //液晶显示位置第一行第一个
Init_DS18B20();
ReadTemp();
temp_to_str();
for (i=0;i<sizeof(value1)-1;i++)
{
write_data(value1[i]);
delay(5);
}
for (i=0;i<sizeof(TempBuffer)-1;i++)
{
write_data(TempBuffer[i]);
delay(5);
}
write_command(0x80+0x40); //液晶显示位置 第二行第一个
delay(100);
for (i=0;i<sizeof(value2)-1;i++)
{
write_data(value2[i]);
delay(5);
}
if(light_flag== 1 )
{
for(i=0;i<sizeof(value3)-1;i++)
{
write_data(value3[i]);
delay(5);
}
}
else
{
for(i=0;i<sizeof(value4)-1;i++)
{
write_data(value4[i]);
delay(5);
}
}
}
void Temperature_Alarm() //温度报警
{
if(temp_value/100>=Alarm_Value) //取temp_value前两位
{
buzzer = 0; //不要用端口赋值
}
else
{
buzzer = 1;
}
}
/主函数/
void main()
{
while(1)
{
show();
Temperature_Alarm();
Check_light();
}
}
我做的液晶是1602的
D0为从温度模块中读取到的当前温度值,D128为设定温度和D156回差温度。可以在触摸屏上设置。设置温度45度后,温度会在30-60度之间工作。如图所示:
一、控制要求
将被控系统的温度控制在某一范围之间,当温度低于下限或高于上限时,应能自动进行调整,如果调整一定时间后仍不能脱离不正常状态。
则采用声光报警,来提醒 *** 作人员注意,排除故障。系统设置一个启动按钮来启动控制程序,设置绿、红、黄三台指示灯来指示温度状态。
当被控系统的温度在要求范围内,则绿灯亮,表示系统运行正常;当被控系统的温度超过上限或低于下限时,经调整且在设定时间内仍不能回到正常范围,则红灯或黄灯亮,并伴有声音报警,表示温度超过上限或低于下限。
该系统充分利用电气智能平台现有设备,引入PLC和变频器于系统中,将硬件模拟和软件仿真有机结合,有效的运用了平台资源。本文通过对该系统的阐述,详细介绍了PLC和变频器在模拟量信号监控中的运用。
扩展资料:
转换原理:
1、数模转换器是将数字信号转换为模拟信号的系统,一般用低通滤波即可以实现。数字信号先进行解码,即把数字码转换成与之对应的电平,形成阶梯状信号,然后进行低通滤波。
根据信号与系统的理论,数字阶梯状信号可以看作理想冲激采样信号和矩形脉冲信号的卷积,那么由卷积定理,数字信号的频谱就是冲激采样信号的频谱与矩形脉冲频谱(即Sa函数)的乘积。这样,用Sa函数的倒数作为频谱特性补偿。
由采样定理,采样信号的频谱经理想低通滤波便得到原来模拟信号的频谱。一般实现时,不是直接依据这些原理。
因为尖锐的采样信号很难获得,因此,这两次滤波(Sa函数和理想低通)可以合并(级联),并且由于这各系统的滤波特性是物理不可实现的,所以在真实的系统中只能近似完成。
2、模数转换器是将模拟信号转换成数字信号的系统,是一个滤波、采样保持和编码的过程。模拟信号经带限滤波,采样保持电路,变为阶梯形状信号,然后通过编码器,使得阶梯状信号中的各个电平变为二进制码。
参考资料来源:百度百科-可编程逻辑控制器
以上就是关于用C语言写出基于单片机的数字温度计程序,要求能下图仿真能运行,如图有问题,则请另附图,谢谢全部的内容,包括:用C语言写出基于单片机的数字温度计程序,要求能下图仿真能运行,如图有问题,则请另附图,谢谢、PLC温度控制梯形图 用三菱plc编写一段温度控制梯形图,控制温度30-60℃,可用触摸屏设置温度、等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)