首先假设你是采样值直接做pid(换算成温度也可以),得到的结果用v_pid表示
之后我的做法是设置两个阈值H和L,可以做以下判断:
v_pid>H 占空比=100%
v_pid<L 占空比=0%
L<v_pid<H 占空比=(v_pid-L)/(H-L)100%
三菱PLC实现PID控制的方法
1)使用PID过程控制模块。这种模块的PID控制程序是PLC生产厂家设计的,并存放在模块中,用户在使用时只需要设置一些参数,使用起来非常方便,一块模块可以控制几路甚至几十路闭环回路。但是这种模块的价格昂贵,一般在大型控制系统中使用。如三菱的A系列、Q系列PLC的PID控制模块。
2)使用PID功能指令。现在很多中小型 PLC都提供PID控制用的功能指令,如FX2N系列PLC的PID指令。它们实际上是用于PID控制的子程序,与A/D、D/A模块一起使用,可以得到类似于使用PID过程控制模块的效果,价格却便宜得多。
3)使用自编程序实现PID闭环控制。有的PLC没有有PID过程控制模块和 PID控制指令,有时虽然有PID控制指令,但用户希望采用变型PID控制算法。在这些情况下,都需要由用户自己编制PID控制程序。
3 三菱FX2N的PID指令
PID指令的编号为FNC88,源 *** 作数[S1]、[S2]、[S3]和目标 *** 作数[D]均为数据寄存器D,16位指令,占9个程序步。[S1]和[S2]分别用来存放给定值SV和当前测量到的反馈值PV,[S3]~[S3]+6用来存放控制参数的值,运算结果MV存放在[D]中。源 *** 作数[S3]占用从[S3]开始的25个数据寄存器。
PID指令是用来调用PID运算程序,在PID运算开始之前,应使用MOV指令将参数设定值预先写入对应的数据寄存器中。如果使用有断电保持功能的数据寄存器,不需要重复写入。如果目标 *** 作数[D]有断电保持功能,应使用初始化脉冲M8002的常开触点将其复位。
PID指令可以同时多次使用,但是用于运算的[S3]、[D]的数据寄存器元件号不能重复。
PID指令可以在定时中断、子程序、步进指令和转移指令内使用,但是应将[S3]+7清零(采用脉冲执行的MOV指令)之后才能使用。
控制参数的设定和 PID运算中的数据出现错误时,“运算错误”标志M8067为 ON,错误代码存放在D8067中。
PID指令采用增量式PID算法,控制算法中还综合使用了反馈量一阶惯性数字滤波、不完全微分和反馈量微分等措施,使该指令比普通的PID算法具有更好的控制效果。
PID控制是根据“动作方向”([S3]+1)的设定内容,进行正作用或反作用的PID运算。PID运算公式如下:
以上公式中:△MV是本次和上一次采样时PID输出量的差值,MVn是本次的PID输出量;EVn和 EVn-1分别是本次和上一次采样时的误差,SV为设定值;PVn是本次采样的反馈值,PVnf、PVnf-1和PVnf-2分别是本次、前一次和前两次滤波后的反馈值,L是惯性数字滤波的系数;Dn和Dn-l分别是本次和上一次采样时的微分部分;K p是比例增益,T S是采样周期,T I和T D分别是积分时间和微分时间,αD是不完全微分的滤波时间常数与微分时间TD的比值。
4PID参数的整定
PID控制器有4个主要的参数K p、T I、T D和T S需整定,无论哪一个参数选择得不合适都会影响控制效果。在整定参数时应把握住PID参数与系统动态、静态性能之间的关系。
在P(比例)、I(积分)、D(微分)这三种控制作用中,比例部分与误差信号在时间上是一致的,只要误差一出现,比例部分就能及时地产生与误差成正比的调节作用,具有调节及时的特点。比例系数K p越大,比例调节作用越强,系统的稳态精度越高;但是对于大多数系统,K p过大会使系统的输出量振荡加剧,稳定性降低。
积分作用与当前误差的大小和误差的历史情况都有关系,只要误差不为零,控制器的输出就会因积分作用而不断变化,一直要到误差消失,系统处于稳定状态时,积分部分才不再变化。因此,积分部分可以消除稳态误差,提高控制精度,但是积分作用的动作缓慢,可能给系统的动态稳定性带来不良影响。积分时间常数T I增大时,积分作用减弱,系统的动态性能(稳定性)可能有所改善,但是消除稳态误差的速度减慢。
微分部分是根据误差变化的速度,提前给出较大的调节作用。微分部分反映了系统变化的趋势,它较比例调节更为及时,所以微分部分具有超前和预测的特点。微分时间常数T D增大时,超调量减小,动态性能得到改善,但是抑制高频干扰的能力下降。
选取采样周期T S时,应使它远远小于系统阶跃响应的纯滞后时间或上升时间。为使采样值能及时反映模拟量的变化,T S越小越好。但是T S太小会增加CPU的运算工作量,相邻两次采样的差值几乎没有什么变化,所以也不宜将T S取得过小。
最好具体说到某种类型的PLC这样更好说。
PWM可以输出连续的、占空比可调的脉冲串,你可以控制脉冲的周期和脉宽,从而用于驱动如SSR这样的功率开关设备用于温控等。
就SIEMENS 200及300PLC而言,你不需要去考虑PID模拟输出值如何转换为PWM脉冲。因为200提供的PID指令向导在你选用数字量输出的时候,因为200CPU内有两个可编程的PWM发生器,指令向导会自己生成0~1对应占空比0~100%的PWM程序段。对于300 系统PID模块中的FB42(非连续输出的PID控制),配合FB43(脉冲发生器)输出的就是PWM,如果是温控,就直接使用FB59(数字量输出的温控PID。)
PID主要就是一个闭环自动控制系统,将PWM结合的目的就是通过不同的占空比做到控制温度的功能,比较关键的问题就是先弄明白PID算法中、比例、差分、微分各个系数的意义和设置方法。他们之间的结合是比较简单的。关键难点在算法本身。
以上就是关于在温度控制系统中采用pid的增量式控制pwm的占空比来控制加热器的功率。全部的内容,包括:在温度控制系统中采用pid的增量式控制pwm的占空比来控制加热器的功率。、三菱plc PID 控制、PLC控制PWM的方法最好详细点等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)