clear
clc
a = 095
k = [5;10;13;4;3;11;13;10;8;16;7;4];
k = -k; % 模拟退火算法是求解最小值,故取负数
d = [2;5;18;3;2;5;10;4;11;7;14;6];
restriction = 46;
num = 12;
sol_new = ones(1,num); % 生成初始解
E_current = inf;E_best = inf;
% E_current是当前解对应的目标函数值(即背包中物品总价值);
% E_new是新解的目标函数值;
% E_best是最优解的
sol_current = sol_new; sol_best = sol_new;
t0=97; tf=3; t=t0;
p=1;
while t>=tf
for r=1:100
%产生随机扰动
tmp=ceil(randnum);
sol_new(1,tmp)=~sol_new(1,tmp);
%检查是否满足约束
while 1
q=(sol_newd <= restriction);
if ~q
p=~p; %实现交错着逆转头尾的第一个1
tmp=find(sol_new==1);
if p
sol_new(1,tmp)=0;
else
sol_new(1,tmp(end))=0;
end
else
break
end
end
% 计算背包中的物品价值
E_new=sol_newk;
if E_new<E_current
E_current=E_new;
sol_current=sol_new;
if E_new<E_best
% 把冷却过程中最好的解保存下来
E_best=E_new;
sol_best=sol_new;
end
else
if rand<exp(-(E_new-E_current)/t)
E_current=E_new;
sol_current=sol_new;
else
sol_new=sol_current;
end
end
end
t=ta;
end
disp('最优解为:')
sol_best
disp('物品总价值等于:')
val=-E_best;
disp(val)
disp('背包中物品重量是:')
disp(sol_best d)
基于固体的退火过程。
模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。
模拟退火算法是一种通用的优化算法,理论上算法具有概率的全局优化性能。
这个问题有人问过,其实你别想象的太复杂,它的思想搞清楚就好了,他首先是个算法,这个算法的目的是求解,精髓是求最优解,它能使解在迭代过程中跳出局部最优的陷阱,怎么跳出的,是通过接受不好的解,继续迭代,这样就可以从整体上考虑,求出最优解。这是它的精髓,知道这个思想之后,看看程序代码,就可以理解了。希望能帮你。
是不是运行错误的文件了。
程序的入口通常是main函数。
这个文件看起来像是h类型。
直接用VC++运行不可行的原因在于,源程序不是vc++项目,你需要创建项目。
把每个代码对应加入,代码的依赖关系要理清。
模拟退火的基本思想:
(1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点), 每个T值的迭代次数L
(2) 对k=1,……,L做第(3)至第6步:
(3) 产生新解S′
(4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数
(5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解
(6) 如果满足终止条件则输出当前解作为最优解,结束程序。
终止条件通常取为连续若干个新解都没有被接受时终止算法。
(7) T逐渐减少,且T->0,然后转第2步。
以上就是关于谁能给我举一个模拟退火算法MATLAB源代码的简单例子全部的内容,包括:谁能给我举一个模拟退火算法MATLAB源代码的简单例子、模拟退火算法的物理意义、模拟退火算法等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)