常用统计方法

常用统计方法,第1张

本文摘抄自其他文章,链接如下

参考文章1

前面介绍了T检验和方差分析,它们解决的是正态分布的高测度数据的均值差异性问题。对于非正态分布的高测度数据,T检验或方差分析的方法就不再适用了。

均值差异性的检验方法:Z检验和T检验综述;

均值差异性检验:方差分析综述;

对于分布形态未知的数据,常用处理方法如下:

判断数据序列的分布形态

以标准的正态分布形态为基准,检验数据序列与正态序列是否存在分布差异性,这里可以用单样本的K-S检验,如果没有显著性差异,就认为该序列满足正态分布。对于已经满足正态分布的序列,可以直接使用基于正态分布的 数据分析 技术,比如T检验和方差分析。

转化为正态分布序列

明确不是正态分布的序列,可以通过技术手段将序列转化为接近正态分布的形态。在数据分析过程中,人们常常借助于秩分把非正态分布的数据转化为接近正态分布的形态;或者借助于Z分数和正态得分对数据序列进行预处理,然后借助正态分布差异性分析结束实现差异显著性检验。

非参数检验方法

除了转化为正态分布序列,还可直接使用非参数检验方法检验其分布差异性。实际上,所谓的非参数检验,其实质就是借助于秩分或符号等技术对原始序列进行转化,然后借用类似参数检验的手段开展数据分析。

非参数检验

前面说到,对于不符合正态分布的数据,可以采用非参数检验的方法进行数据分析。在这里,不符合正态分布的数据可以分为两种:1、不符合正态分布的高测度数据(定距数据和高测度的定序数据);2、低测度数据(定类数据和低测度的定序数据)。根据上面两种数据类型,非参数检验主要包括下面三个方面的内容:

检验样本的分布形态

检验高测度数据序列的分布形态,这是针对单变量的检验,其方法是检验数据序列的分布与标准分布形态的差异性。如果当前数据序列与标准分布形态没有显著性差异,则被认为当前序列满足该分布形态。常见的针对单样本数据判断其分布形态的检验技术主要有:单样本K-S检验、单样本游程检验、二项分布检验、卡方检验。

分布形态差异显著性检验

对于不符合正态分布的高测度数据序列,常见的差异显著性检验方法有:1、两独立样本的差异显著性检验;2、多独立样本的差异显著性检验;3、两关联样本的差异显著性检验;4、多关联样本的差异显著性检验。

低测度数据的差异显著性检验

对于不符合正态分布的定类数据或低测度定序数据,其检验方法是利用交叉表技术分行分列计算交叉点的频数,利用卡方距离实施卡方检验,基于频数和数据分布形态分析不同类别的数据是否存在显著性差异。对于定类数据的对比检验,也叫独立性检验。

分布形态差异显著性检验

分布形态检验前面已经介绍过,低测度数据的卡方检验将在下一篇文章中介绍。下面重点介绍对于非正态分布的高测度数据的分布形态差异显著性检验方法。

两关联样本的非参数检验

对不满足正态分布的两关联样本,如果分析其是否存在显著性差异,不可以通过均值比较其差异性,通常是通过对比其分布形态比较其差异性。

数据序列的三个要求:1、样本数据来源于同一总体的不同视角,或者是对相同样本的多次测量;2、几组样本数据之间存在一一对应的关联性;3、数据不满足正态分布,或样本的测量区分度不高。

两关联样本非参数检验的方法

符号秩检验(Wilcoxon);基于符号检验其秩分分布的办法,本质上是一种检验平均秩的检验。即把样本的两次观测值相减,记录差值的符号和绝对值,并基于绝对值升序求秩分,比较两组数据的正值秩分或负值秩分,从而确定其差异性。

符号检验(Sign);纯粹通过符号实施数据检验的一种方法,即对样本的两次测量值直接相减求取符号,然后根据符号情况确定其差异性。由于符号检验仅仅通过正负号进行检验,适合于测度较低的非定距数据,其检验准确度不够高。

变化显著性检验(McNemar);变化显著性检验,是基于两次测量差值情况的检验方法。即把样本的两次测量值相减,记录差值,然后通过校验公式处理后,求取卡方值。然后基于卡方检验决定其差异性。变化显著性检验,仅适用于两个变量均为二分数据的情况。

边缘一致性检验(MarginalHomo);边缘一致性检验,也是基于两次测量差值情况的检验方法,主要通过把先后测量的两组样本值进行卡方检验。基于卡方检验的方法判断序列之间差异性。边缘一致性检验,对变量的要求并不局限于二分数据,还可以面向多值的分类变量。

多关联样本的非参数检验

当关联样本多于两个时,需要用多关联样本的非参数检验。多关联样本的非参数检验方法主要有:

双向等级方差分析(FriedMan);双向等级方差 分析 是基于K个变量降序秩分的差异显著性检验。这是基于秩分的一种方差分析方法,其基本思路是先对样本的K个检验量进行降序求秩分,然后按照秩分做方差分析。双向等级方差分析,比较适合于针对定距变量和高测度定序变量的数据分析。

肯德尔和谐系数检验(Kendall);肯德尔和谐系数检验,是基于肯德尔系数的差异显著性检验技术,是基于秩分的平均等级分析。其基本思路是:先计算K个观测量卡方值和肯德尔和谐系数W,然后判断其观测值的分布是否一致。在肯德尔和谐系数检验中,以肯德尔和谐系数W表示被检验变量的秩分之间的差异程度。协同系数W的取值在0~1,W越接近于1,表示变量的组件差异越大,反之,协同系数W越接近于0,表示变量的组间差异越小。肯德尔和谐系数检验,比较适合于定距变量与定序变量的处理。

二分变量检验(Cochran检验);二分变量检验,通过检验多个样本量的CochranQ系数,以便分析K各关联样本是否来自同一总体或者具有相同的分布。二分变量检验,主要面向二分变量的分析。

两独立样本的非参数检验

对不满足正态分布的两独立样本,如需要分析其是否存在显著性差异,同样不可以通过均值比较其差异性,通常是通过分布形态或秩分比较其差异性。对于两独立样本的非参数检验,对数据序列主要有以下要求:1、样本数据来源于同一总体;2、样本数据不满足正态分布,或样本的测量区分度不高;3、样本数据可被另外的分组变量划分为两组;

两独立样本非参数检验的方法

Wilcxon W等级和检验(Mann-Whitney U);Wilcxon W(威尔克科逊)等级与检验,也叫曼-惠特尼U检验,其基本思路是:把全部样本混在一起求秩,然后根据两组样本的秩分情况判断是否存在差异。曼-惠特尼U检验本质上是一种通过比较两个样本秩分情况而获得差异显著性检验结论的一种检验技术。本算法适应于定距数据和定序数据。

摩西极端反映的差异检验(MosesExtreme reaction);摩西极端反映检验,即摩西极端反映的差异显著性检验,即对全体样本混合求秩分,根据两端的极端秩分值确定其差异性。摩西极端反映检验是通过检验极端秩分值来反映的差异情况,来判断两组数据的分布是否存在差异。

两独立样本的K-S检验(Kolmogorov-Smirnov Z);两独立样本的K-S检验,是基于秩分累积频数的检验方式。即对全体样本混合求取秩分,然后针对秩分的累积频数或累积频率进行差异显著性检验。本算法适应于定距数据和定序数据。如果预先把其中一组数据设置为标准分布形态的数据,那么通过K-S分析待检验序列与标准分布的差异性水平,就能实现针对单样本数据的分布形态的判定。

沃尔德-沃尔福威茨游程检验(Wald-Wolfwitz runs);沃尔德-沃尔夫威茨游程检验,是基于秩分排列的游程检验。即对全体样本混合求取秩分,并基于两组样本在秩分序列中的位置构造游程。通过分析游程的大小和数量实现游程检验,从而判断两组样本在混合序列中的排列是否为随机的。若两组样本在混合序列中的排列是随机的,则两组样本之间没有显著性差异。

多独立样本的非参数检验

多独立样本的差异显著性检验既可以是针对同一总体的不同随机抽样,也可以源于不同总体,其目的是判断多个样本序列的差异是否显著。在多独立样本的差异显著性检验中,对符合正态分布的高测度数据,通常使用方差分析的方法,而对不符合正态分布的数据,或者方差非齐性时,则常常使用非参数检验的方法。

多独立样本非参数检验的方法

K-W平均秩检验(Kruskal-Wailis H);K-W平均秩检验是一种基于平均秩的差异显著性检验。其基本思路是:先把待分析的观测变量序列排序后求取秩分(或者把多个独立样本的数据混合后排序并求取秩分),然后基于各组秩分,进行类似方差分析的计算,分析秩分的均值差异是否显著。K-W平均秩检验是基于秩分的一种方差分析技术,适合于观测变量为定距数据或定序数据的场合。

中位数检验(Median);中位数检验是基于 数据 序列的中位数而设计的一种差异性的检验。其基本思路:先求取混合后数据的中位数,然后利用卡方分布统计量来计算每个样本组内中位数两侧个案数的差异性。中位数检验适合于测度不高的定序变量。

分组分布检验(Jonckheere);分组分布检验是通过检验多个样本组是否具有相同分布来判断差异性的方法。样本的分组根据分组变量定义。分组分布检验既可以检验定距变量,也可以检验定序变量。对于定序变量,本方法比K-W检验更为有效。

M序列是非线性序列,可用的跳频图案很多,跳频图案的密钥量也大,并有较好的自相关和互相关特性,所以它是较理想的跳频指令码。其缺点是硬件产生时设备较复杂。

M序列特性

1、均衡特性(平衡性)

m序列每一周期中 1 的个数比 0 的个数多 1 个

2、游程特性(游程分布的随机性)

M序列中,状态“0”或“1”连续出现的段称为游程。游程中“0”或“1”的个数称为游程长度。

m序列的一个周期(p=2^n-1)中,游程总数为 2^n-1,“0”、“1”各占一半。

3、移位可加性

2个彼此移位等价的相异M序列,按模2相加所得的序列仍为M序列,并与原M序列等价。

M序列是工程中常用的输入信号,它的性质类似于白噪声,而白噪声是理论上最好的输入信号,可见M序列的价值。下面介绍M序列的matlab产生方法,看到很多论坛产生M序列的程序复用性不高,而matlab就提供了产生M序列的专门函数,这里尝试一下。

idinput函数

产生系统辨识常用的典型信号。

格式

u = idinput(N,type,band,levels)

[u,freqs] = idinput(N,'sine',band,levels,sinedata)

N

产生的序列的长度,如果N=[N nu],则nu为输入的通道数,如果N=[P nu M],则nu指定通道数,P为周期,MP为信号长度。默认情况下,nu=1,M=1,即一个通道,一个周期。

Type

指定产生信号的类型

Band

指定信号的频率成分。对于’rgs’、’rbs’、’sine’,band = [wlow, whigh]指定通带的范围,如果是白噪声信号,则band=[0, 1],这也是默认值。指定非默认值时,相当于有色噪声。

对于’prbs’,band=[0, B],B表示信号在一个间隔1/B(时钟周期)内为恒值,默认为[0, 1]。

Levels

指定输入的水平。Levels=[minu, maxu],在type=’rbs’、’prbs’、’sine’时,表示信号u的值总是在minu和maxu之间。对于type=’rgs’,minu指定信号的均值减标准差,maxu指定信号的均值加标准差,对于0均值、标准差为1的高斯白噪声信号,则levels=[-1, 1],这也是默认值。

极光杯数学是自主命题卷,符合考试大纲,以后会逐步减少选题增大在题命题,但不影响做,不建议基础薄弱的做。

2022-2023 年度“极光杯”跨年线上题型如下:

一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。

二、选择题:本题共3 小题,每小题5分,共15分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。

三、填空题:本题共3小题,每小题5分,共15分。

四、解答题:本题共7小题,共80分。解答应写出文字说明、证明过程或演算步骤。

例题如下:

西电东送”是我国西部大开发的标志性工程之一,也是我国实现全国电力资源优化配置的一项重要的战略举措某工厂对同一型号的20 根电缆依次进行耐压测试,测得数据如下:

1560 2255 1320 2467 8679 864 6104 1257 1504 1176

2019 2072 1898 5858 1531 5654 5110 5670 2223 1415

为了检验这组观测值是否取自于同一总体,可以采用游程检验设x,xg,,x,为依时间顺序连续得到的一组样本观测值序列记样本中位数为m。,把序列中小于m。的观测值替换为0,大于或等于m的观测值替换为1,这样就得到了一个仅由0和1两个元素组成的序列,其中以0为界的一连串的1或以1为界的一连串的0称为一个游程。

例如序列010 1110110 10 0,它有5个0的游程和4个1的游程,总游程数为9当总游程数过小或过大时,可以认为这组数据受到非随机因素的干扰,反之则可以认为这组数据是随机取自于同一个总体。

(1)求这组数据0的游程数;

(2)已知总游程数R满足P(R≤6)= P(R≥16)= 0025,则是否有95%的把握认为这20根电缆是随机取自于同一总体

(3)使用总游程数进行检验有什么优缺点请简要说明。

SPSS非参数检验:单样本

一、概念:

单样本非参数检验使用一个或多个非参数检验识别单个字段中的差别。非参数检验不假定您的数据呈正态分布。非参数检验(Nonparametrictests)是统计分析方法的重要组成部分,它与参数检验共同构成统计推断的基本内容。参数检验是在总体分布形式已知的情况下,对总体分布的参数如均值、方差等进行推断的方法。但是,在数据分析过程中,由于种种原因,人们往往无法对总体分布形态作简单假定,此时参数检验的方法就不再适用了。非参数检验正是一类基于这种考虑,在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态等进行推断的方法。由于非参数检验方法在推断过程中不涉及有关总体分布的参数,因而得名为“非参数”检验。

二、目标(分析-非参数检验-单样本-目标)

您的目标是什么?目标允许您快速指定常用的不同检验设置。

21、自动比较观察数据和假设数据。该目标对仅具有两个类别的分类字段应用二项式检验,对所有其他分类字段应用卡方检验,对连续字段应用Kolmogorov-Smirnov检验。

22、检验随机序列。该目标使用游程检验来检验观察到的随机数据值序列。

23、自定义分析。当您希望手动修改“设置”选项卡上的检验设置时,选中此选项。注意,如果您随后在“设置”选项卡上更改了与当前选定目标不一致的选项,则会自动选择该设置。

三、选择检验(分析-非参数统计-单样本-设置-选择检验)

1、根据数据自动选择检验。该设置对仅具有两个有效(非缺失)类别的分类字段应用二项式检验,对所有其他分类字段应用卡方检验,对连续字段应用Kolmogorov-Smirnov检验。

2、自定义检验。这些设置允许您选择要执行的特定检验。

21、比较观察二分类可能性和假设二分类可能性(二项式检验)。二项式检验可以应用到所有字段。这将生成一个单样本检验,可以检验标记字段(只有两个类别的分类字段)的观察分布是否与指定的二项式分布期望相同。此外,您还可以请求置信区间。

22、比较观察可能性和假设可能性(卡方检验)。卡方检验可以应用到名义和有序字段。这将生成一个单样本检验,它可以根据字段类别的观察和期望频率间的差异来计算卡方统计量。

23、检验观察分布和假设分布(Kolmogorov-Smirnov检验)。Kolmogorov-Smirnov检验可以应用到连续字段。这将生成一个单样本检验,即字段的样本累积分布函数是否为齐次的均匀分布、正态分布、泊松分布或指数分布。

24、比较中位数和假设中位数(Wilcoxon符号秩检验)。Wilcoxon符号秩检验可以应用到连续字段。这将生成一个字段中位数值的单样本检验。指定一个数字作为假设中位数。

25、检验随机序列(游程检验)。游程检验可以应用到所有字段。这将生成一个单样本检验,即对分字段的值序列是否为随机序列。

四、二项式检验(分析-非参数统计-单样本-设置-选择检验-自定义检验-二项式检验)

二项式检验适用于标记字段(只有两个类别的分类字段),但可通过使用定义“成功”的规则应用到所有字段。在生活中有很多数据的取值是二值的,例如,人群可以分成男性和女性,产品可以分成合格和不合格,学生可以分成三好学生和非三好学生,投掷硬币实验的结果可以分成出现正面和出现反面等。通常将这样的二值分别用1或0表示。如果进行n次相同的实验,则出现两类(1或0)的次数可以用离散型随机变量X来描述。如果随机变量X为1的概率设为P,则随机变量X值为0的概率Q便等于1-P,形成二项分布。SPSS的二项分布检验正是要通过样本数据检验样本来自的总体是否服从指定的概率为P的二项分布,其原假设是:样本来自的总体与指定的二项分布无显著差异。

1、假设比例。这指定了定义为“成功”的记录的期望比例,或p。指定一个大于0且

小于1的值。默认值为05。

2、置信区间。可以使用以下方法计算二分类数据的置信区间:◎Clopper-Pearson(精确)。基于累积二项式分布的精确区间。◎Jeffreys。基于p的后验分布且应用Jeffreys先验的Bayesian区间。◎似然比。基于p的似然函数的区间。

3、定义分类字段的成功。这可以指定如何为分类字段定义对照假设比例检验数据值的“成功”。◎使用在数据中找到的第一个类别将使用在样本中找到的第一个定义“成功”的值执行二项式检验。此选项仅适用于只有两个值的名义或有序字段;如果使用了此选项,则在“字段”选项卡中指定的所有其他分类字段都不会检验。这是默认值。◎指定成功值将使用指定以定义“成功”的值列表来执行二项式检验。可以指定字符串或数值列表。列表中的值不需要在样本中出现。

4、定义连续字段的成功值。这可以指定如何为连续字段定义对照检验值检验数据值的“成功”。成功被定义为等于或小于割点的值。◎样本中点在最小值和最大值的平均值上设置割点。◎自定义割点允许您为割点指定一个值。

五、卡方检验(分析-非参数统计-单样本-设置-选择检验-自定义检验-卡方检验)

卡方检验方法可以根据样本数据,推断总体分布与期望分布或某一理论分布是否存在显著差异,是一种吻合性检验,通常适于对有多项分类值的总体分布的分析。它的原假设是:样本来自的总体分布与期望分布或某一理论分布无差异。

1、所有类别具有相等的概率。这将在样本中的所有类别间生成均等的频率。这是默认值。

2、自定义期望可能性。这允许您为指定的类别列表指定不相等的频率。可以指定字符串或数值列表。列表中的值不需要在样本中出现。在类别列中,指定类别值。在相对频率列中,为每个类别指定一个大于0的值。自定义的频率被视为比率,例如,指定频率1、2和3等同于指定频率10、20和30,两者均指定了期望1/6的记录属于第一个类别,1/3的记录属于第二个类别,1/2的记录属于第三个类别。在指定自定义期望可能性时,自定义类别值必须包括数据中的所有字段值;否则将不对该字段执行检验。

六、单样本K-S检验(分析-非参数统计-单样本-设置-选择检验-自定义检验-K-S检验)

K-S检验方法能够利用样本数据推断样本来自的总体是否服从某一理论分布,是一种拟合优度的检验方法,适用于探索连续型随机变量的分布。例如,收集一批周岁儿童身高的数据,需利用样本数据推断周岁儿童总体的身高是否服从正态分布。再例如,利用收集的住房状况调查的样本数据,分析家庭人均住房面积是否服从正态分布。单样本K-S检验的原假设是:样本来自的总体与指定的理论分布无显著差异,SPSS的理论分布主要包括正态分布、均匀分布、指数分布和泊松分布等。

1、正态。使用样本数据使用观察到的均值和标准差;自定义允许您指定值。

2、均匀。使用样本数据使用观察到的最小值和最大值;自定义允许您指定值。

3、指数分布。样本均值使用观察到的均值;自定义允许您指定值。

4、泊松。样本均值使用观察到的均值;自定义允许您指定值。

七、游程检验(分析-非参数统计-单样本-设置-选择检验-自定义检验-游程检验)

变量值随机性检验通过对样本变量值的分析,实现对总体的变量值出现是否随机进行检验。它的原假设是:总体变量值出现是随机的。变量随机性检验的重要依据是游程。所谓游程是样本序列中连续出现相同的变量值的次数。可以直接理解,如果硬币的正反面出现是随机的,那么在数据序列中,许多个1或许多个0连续出现的可能性将不太大,同时,1和0频繁交叉出现的可能性也会较小。因此,游程数太大或太小都将表明变量值存在不随机的现象。

游程检验适用于标记字段(只有两个类别的分类字段),但可通过使用定义组的规则

应用到所有字段。

1、定义分类字段的组◎样本中仅有2个类别使用在定义组的样本中找到的值来执行游程检验。此选项仅适用于只有两个值的名义或有序字段;如果使用了此选项,则在“字段”选项卡中指定的所有其他分类字段都不会检验。◎将数据重新编码为2个类别使用指定以定义某个组的值列表来执行游程检验。样本中的所有其他值定义其他组。列表中的值不需要在样本中出现,但每个组中必须至少有一条记录。

2、定义连续字段的割点。这可以指定如何为连续字段定义组。第一组定义为等于或小于割点的值。◎样本中位数在样本中位数处设置割点。◎样本均值在样本均值处设置割点。◎自定义允许您为割点指定一个值。

以上就是关于常用统计方法全部的内容,包括:常用统计方法、什么M序列,有什么优点,前景、极光杯数学谁出的等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/9579192.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-29
下一篇 2023-04-29

发表评论

登录后才能评论

评论列表(0条)

保存