countv这个文件的第88 94 98 行 好好看看。。。。。 是不是又没有写 “;”
如果是语法错误。。。 错误提示一般都会显示第几行。。 但是有时候虽然写了第88行 但是很有可能第87或89行有错误。。。
目前看你的错误提示。。。 只能解释到这里。。。 希望能帮上你。。。
举个简单点的例子,如下。
设计一个4bit的计数器,在记到最大值时输出一个信号
module counter_16 ( input clk, input rst_n, input cnt_in ,output reg cnt_out );
reg [3:0] cnt;
always @ (posedge clk or negedge rst_n) begin
if (~rst_n) cnt <= 4'b0;
else if (cnt_in) cnt <= cnt +1'b1;
else cnt <= cnt;
end
always @ (posedge clk or negedge rst_n) begin
if (~rst_n) cnt_out <= 1'b0;
else if (cnt_in && cnt == 4'b1111) cnt_out <= 1'b1;
else cnt_out <= 1'b0;
end
endmodule
这实际上设计了一个16进制计数器其中的一位,你可以例化多个相同模块,将低位的cnt_out连接到高位的cnt_in,级联成一个任意位数的16进制计数器。
修改了一下,加了输入输出端口,以及触发条件
module test(red,amber,green ,able);
input able;
output red,amber,green;
reg clock,red,amber,green;
parameter on=1,off=0,red_tics=350,green_tics=200,amber_tics=30;
//交通灯初始化
initial red=off;
initial amber=off;
initial green=off;
//交通灯控制时序
always
wait(able)
begin
red=on;//开红灯
light(red,red_tics);//调用等待任务
green=on;//开绿灯
light(green,green_tics);//等待
amber=on;//开黄灯
light(amber,amber_tics);//等待
end
//定义交通灯开启时间的任务
task light;
output color;
input [31:0]tics;
begin
repeat(tics)
@(posedge clock);
color=off;
end
endtask
always
begin
#100 clock=0;
#100 clock=1;
end
endmodule
module asyn(clk,rst,wr,wr_bit,addr,bit_in,data_in,t1_ow,rxd,txd,intr,data_out,pcon,scon,rx_sbuf);
input clk;
input rst;
input wr;
input wr_bit;
input [7:0] addr;
input bit_in;
input [7:0] data_in;
input t1_ow;
input rxd;
output txd;
output intr;
output [7:0] data_out;
output [7:0] scon;
output [7:0] pcon;
output [7:0] rx_sbuf;
reg txd;
reg [7:0] scon;
reg [7:0] pcon;
assign intr=scon[1]|scon[0];
//
wire t1_ow_final;
reg div2_flag;
reg t1_ow_buf;
reg t1_ow_final_buf;
// signals with transmit part
reg [7:0] tx_sbuf;
reg send_n; //active low,indicate that it is transmiting datas
wire wr_sbuf_en;
assign wr_sbuf_en=(wr==1'b1&&addr==8'h99);
reg wr_sbuf_en_mem;
wire shift_en;
reg [3:0] tx_next_state;
reg [3:0] tx_current_state;
parameter IDLE=11,START=0,D0=1,D1=2,D2=3,D3=4,D4=5,D5=6,D6=7,D7=8,TB8_BIT=9,STOP_BIT=10; //states define
reg [3:0] osc_cnt;
reg [3:0] tx_sample_cnt;
reg tx_clk;
//signals with receive part
reg [3:0] rx_next_state;
reg [3:0] rx_current_state;
reg [3:0] rx_sample_cnt;
wire one_bit;
reg rxd_buf;
reg [10:0] sbuf_rxd_tmp;
reg [7:0] rx_sbuf;
reg sample_7,sample_8,sample_9;
reg receive;
//signals with both transmiting and receiving parts
//always @()
//begin
//SM0=scon[7];
//SM1=scon[6];
//SM2=scon[5];
//REN=scon[4];
//TB8=scon[3];
//RB8=scon[2];
//TI=scon[1];
//RI=scon[0];
//end
always @(posedge clk or posedge rst) //register scon
begin
if (rst)
scon <=8'b0100_0000;
else if ((wr) & !(wr_bit) & (addr==8'h98))
scon <=data_in;
else if ((wr) & (wr_bit) & (addr[7:3]==5'b10011))
scon[addr[2:0]]<=bit_in;
else if (tx_next_state==STOP_BIT)
scon[1] <=1'b1;
else
case(rx_next_state)
START:scon[0]<=1'b0;
IDLE:if(rx_current_state==STOP_BIT)
begin
case (scon[7:6])
2'b00: scon[0] <= 1'b1;
2'b01: if(scon[5])
if(one_bit)
scon[0] <= 1'b1;
else
scon[0] <= 1'b0;
else
scon[0] <= 1'b1;
2'b10,2'b11: if(scon[5])
scon[0]<=sbuf_rxd_tmp[9];
else
scon[0]=1'b1;
endcase
end
endcase
end
//
//power control register
//
wire smod;
assign smod = pcon[7];
always @(posedge clk or posedge rst)
begin
if (rst)
pcon <= 8'b0000_0000;
else if ((addr==8'h87) & (wr) & !(wr_bit))
pcon <= data_in;
end
always @(posedge clk or posedge rst) //osc_cnt
if(rst)
osc_cnt<=4'b0000;
else if(osc_cnt==4'b1011)
osc_cnt<=4'b0000;
else
osc_cnt<=osc_cnt+1'b1;
always @(posedge clk or posedge rst) //t1_ow_buf
if(rst)
t1_ow_buf<=1'b0;
else if(t1_ow)
t1_ow_buf<=~t1_ow;
always @(posedge clk or posedge rst) //div2_flag
if(rst)
div2_flag<=1'b0;
else if(~t1_ow_buf&t1_ow)
div2_flag<=~div2_flag;
assign t1_ow_final=(pcon[7]==1'b1)t1_ow:t1_ow&div2_flag;
//transmit part
always @(posedge clk or posedge rst) //t1_ow_final_buf
if(rst) t1_ow_final_buf<=1'b0;
else t1_ow_final_buf<=t1_ow_final;
always @(posedge clk or posedge rst) //tx_sample_cnt
if(rst)
begin
tx_sample_cnt<=4'b0000;
end
else if(t1_ow_final_buf==1'b0&&t1_ow_final==1'b1)
tx_sample_cnt<=tx_sample_cnt+1'b1;
always @(posedge clk or posedge rst)
if(rst)
wr_sbuf_en_mem<=1'b0;
else if (wr_sbuf_en&&wr_sbuf_en_mem<=1'b0)
wr_sbuf_en_mem<=1'b1; //represent that the tx_sbuf has been loaded
else if(tx_current_state==STOP_BIT)
wr_sbuf_en_mem<=1'b0;
assign shift_en=wr_sbuf_en_mem==1'b1&&tx_sample_cnt==4'b1111&&osc_cnt==4'b1011&&t1_ow_final_buf==1'b0&&t1_ow_final==1'b1;
always @(posedge clk or posedge rst)
if(rst)
tx_sbuf<=8'b0000_0000;
else if (wr_sbuf_en&&wr_sbuf_en_mem<=1'b0)
tx_sbuf<=data_in;
else if(send_n==1'b0&&shift_en)
tx_sbuf<=tx_sbuf>>1'b1;
//the three always phrase below is the 3 parts discription of state machine
always @()//(tx_current_state or wr_sbuf_en_mem or tx_sample_cnt or osc_cnt or TH1 or TL1 or shift_en)
begin
case(tx_current_state)
IDLE: if(shift_en) //
tx_next_state=START;
else
tx_next_state= IDLE;
START:if(shift_en)
tx_next_state=D0;
else
tx_next_state=START;
D0: if(shift_en)
tx_next_state=D1;
else
tx_next_state=D0;
D1: if(shift_en)
tx_next_state=D2;
else
tx_next_state=D1;
D2: if(shift_en)
tx_next_state=D3;
else
tx_next_state=D2;
D3: if(shift_en)
tx_next_state=D4;
else
tx_next_state=D3;
D4: if(shift_en)
tx_next_state=D5;
else
tx_next_state=D4;
D5: if(shift_en)
tx_next_state=D6;
else
tx_next_state=D5;
D6: if(shift_en)
tx_next_state=D7;
else
tx_next_state=D6;
D7: if(shift_en)
if(scon[7:6]==2'b00||scon[7:6]==2'b01)
tx_next_state=STOP_BIT;
else
tx_next_state=TB8_BIT;
else
tx_next_state=D7;
TB8_BIT: tx_next_state=STOP_BIT;
STOP_BIT: if(tx_sample_cnt==4'b1111&&osc_cnt==4'b1011&&t1_ow_final==1'b1)
tx_next_state=IDLE;
else
tx_next_state=STOP_BIT;
default:tx_next_state=IDLE;
endcase
end
always @(posedge clk or posedge rst)
if(rst)
tx_current_state<=IDLE;
else
tx_current_state<=tx_next_state;
always @(posedge clk or posedge rst)
if(rst)
begin
txd<=1'b1;
send_n<=1'b1;
end
else
case(tx_next_state)
IDLE:
begin
send_n<=1'b1;
txd<=1'b1;
end
START:begin
send_n<=1'b0;
txd<=1'b0;
end
D0: txd<=tx_sbuf[0];
D1: txd<=tx_sbuf[0];
D2: txd<=tx_sbuf[0];
D3: txd<=tx_sbuf[0];
D4: txd<=tx_sbuf[0];
D5: txd<=tx_sbuf[0];
D6: txd<=tx_sbuf[0];
D7: txd<=tx_sbuf[0];
TB8_BIT: txd<=scon[3];
STOP_BIT:
begin
txd<=1'b1;
end
endcase
//receiving part
assign rx_shift_en=rx_sample_cnt==4'b1111&&t1_ow_final_buf==1'b0&&t1_ow_final==1'b1;
always @(posedge clk or posedge rst) //describe the rxd_buf
if(rst)
rxd_buf<=1'b0;
else
rxd_buf<=rxd;
always @(posedge clk or posedge rst) //describe the rx_sample_cnt
if(rst)
rx_sample_cnt<=4'b0000;
else if(rxd_buf==1'b1&&rxd==1'b0) //此条件启动接收过程
rx_sample_cnt<=4'b0000;
else if(t1_ow_final)
rx_sample_cnt<=rx_sample_cnt+1'b1;
always @(posedge clk)
if(rx_sample_cnt==4'b0110&&t1_ow_final)
sample_7<=rxd;
always @(posedge clk)
if(rx_sample_cnt==4'b0111&&t1_ow_final)
sample_8<=rxd;
always @(posedge clk)
if(rx_sample_cnt==4'b1000&&t1_ow_final)
sample_9<=rxd;
assign one_bit=sample_7&&sample_8||sample_7&&sample_9||sample_8&&sample_9;
//the three always phrase below is the 3 parts discription of state machine
always @()
begin
case(rx_current_state)
IDLE: if(rxd_buf==1'b1&&rxd==1'b0&&scon[4]==1'b1) //检测到了rxd从1到0的跳变
rx_next_state=START;
else
rx_next_state= IDLE;
START: if(rx_shift_en)
if(~one_bit)
rx_next_state=D0;
else
rx_next_state=IDLE;
else
rx_next_state=START;
D0: if(rx_shift_en)
rx_next_state=D1;
else
rx_next_state=D0;
D1: if(rx_shift_en)
rx_next_state=D2;
else
rx_next_state=D1;
D2: if(rx_shift_en)
rx_next_state=D3;
else
rx_next_state=D2;
D3: if(rx_shift_en)
rx_next_state=D4;
else
rx_next_state=D3;
D4: if(rx_shift_en)
rx_next_state=D5;
else
rx_next_state=D4;
D5: if(rx_shift_en)
rx_next_state=D6;
else
rx_next_state=D5;
D6: if(rx_shift_en)
rx_next_state=D7;
else
rx_next_state=D6;
D7: if(rx_shift_en)
if(scon[7:6]==2'b00||scon[7:6]==2'b01)
rx_next_state=STOP_BIT;
else
rx_next_state=TB8_BIT;
else rx_next_state=D7;
TB8_BIT: if(rx_shift_en)
rx_next_state=STOP_BIT;
else
rx_next_state=TB8_BIT;
STOP_BIT: if(rx_shift_en)
rx_next_state=IDLE;
else
rx_next_state=STOP_BIT;
endcase
end
always @(posedge clk or posedge rst)
if(rst)
rx_current_state<=IDLE;
else
rx_current_state<=rx_next_state;
always @(posedge clk or posedge rst)
if(rst)
receive<=1'b0;
else
case(rx_next_state)
IDLE:
receive<=1'b0;
START:begin
receive<=1'b1;
sbuf_rxd_tmp<=10'b11_1111_1111;
end
D0,D1,D2,D3,D4,D5,D6,D7: if(rx_shift_en) sbuf_rxd_tmp<={sbuf_rxd_tmp[10:0],one_bit};
STOP_BIT:
receive<=1'b1; // end of receiving
endcase
//
//serial port buffer (receive)
//
always @(posedge clk or posedge rst)
begin
if (rst)
rx_sbuf<=8'h00;
else if (rx_next_state==STOP_BIT)
case (scon[7:6])
2'b00,2'b01:rx_sbuf<=sbuf_rxd_tmp[7:0];
2'b10,2'b11:rx_sbuf<=sbuf_rxd_tmp[8:1];
endcase
end
endmodule
以上就是关于各位懂verilog的大侠麻烦看段程序,关于数字钟设计的全部的内容,包括:各位懂verilog的大侠麻烦看段程序,关于数字钟设计的、怎么用Verilog编一个计数器的程序、verilog 程序问题,初学者,请见谅,程序代码如下等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)