程序设计=数据结构+算法。所谓算法是指解决问题的具体方法是什么。而数据结构是指所要解决的问题在计算机中的表示形式。所以在学C语言的时候只要先掌握算法是如何实现的,即能够把解决问题的方法用C语言描述出来,且描述的“好”即可具体关于算法的含义,有一门课叫“数据结构”有机会可以自学,计算机专业这门课都是必修课。
c语言中的算法是指:一系列解决问题的清晰指令,用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。通俗说就是解决问题的方法和步骤。
描述算法的例子:
问题:从上海去到北京。
其中的算法:做汽车、做飞机、或者徒步。
问题:喝茶。
其中的算法:先找到茶叶,再烧一壶开水,然后将茶叶放到杯子里,将开水倒入杯中,等茶叶泡好。
问题:开车。
其中的算法:首先要打开车门,驾驶员坐好,插上车钥匙,发动汽车。
算法的五个重要的特征:有穷性(Finiteness)、确切性(Definiteness)、输入项(Input)、输出项(Output)、可行性(Effectiveness)。
算法的时间复杂度:算法的时间复杂度是指执行算法所需要的计算工作量。一般来说,计算机算法是问题规模n 的函数f(n),算法的时间复杂度也因此记做。T(n)=Ο(f(n))因此,问题的规模n 越大,算法执行的时间的增长率与f(n) 的增长率正相关,称作渐进时间复杂度(Asymptotic Time Complexity)。
算法的空间复杂度:算法的空间复杂度是指算法需要消耗的内存空间。其计算和表示方法与时间复杂度类似,一般都用复杂度的渐近性来表示。同时间复杂度相比,空间复杂度的分析要简单得多。可以从正确性、可读性、健壮性(容错性)来分析。
集束搜索(又名定向搜索,Beam Search)——最佳优先搜索算法的优化。
A搜寻算法——图形搜索算法,是最佳优先搜索的范例,从给定起点到给定终点计算出路径。
数据压缩——采取特定编码方案,使用更少的字节数(或是其他信息承载单元)对信息编码的过程,又叫来源编码。
离散微分算法(Discrete differentiation)
哈希算法(Hashing)
堆排序(Heaps)
合并排序(Merge Sort)
梯度下降(Gradient descent)——一种数学上的最优化算法。
牛顿法(Newton's method)——求非线性方程(组)零点的一种重要的迭代法。
欧几里得算法(Euclidean algorithm)——计算两个整数的最大公约数。最古老的算法之一,出现在公元前300前欧几里得的《几何原本》。
Buchberger算法——一种数学算法,可将其视为针对单变量最大公约数求解的欧几里得算法和线性系统中高斯消元法的泛化。
动态规划算法(Dynamic Programming)——展示互相覆盖的子问题和最优子架构算法。
Diffie-Hellman密钥交换算法——一种加密协议,允许双方在事先不了解对方的情况下,在不安全的通信信道中,共同建立共享密钥。该密钥以后可与一个对称密码一起,加密后续通讯。
Dijkstra算法——针对没有负值权重边的有向图,计算其中的单一起点最短算法。
二分查找(Binary Search)——在线性数组中找特定值的算法,每个步骤去掉一半不符合要求的数据。
合并查找算法(Union-find)——给定一组元素,该算法常常用来把这些元素分为多个分离的、彼此不重合的组。
期望-最大算法(Expectation-maximization algorithm,又名EM-Training)——在统计计算中,期望-最大算法在概率模型中寻找可能性最大的参数估算值,其中模型依赖于未发现的潜在变量。
快速傅里叶变换(Fast Fourier transform,FFT)——计算离散的傅里叶变换(DFT)及其反转。
最大流量算法(Maximum flow)——该算法试图从一个流量网络中找到最大的流。
LLL算法(Lenstra-Lenstra-Lovasz lattice reduction)——以格规约(lattice)基数为输入,输出短正交向量基数。
两次筛法(Quadratic Sieve)——现代整数因子分解算法,在实践中,是目前已知第二快的此类算法(仅次于数域筛法Number Field Sieve)。
RANSAC——是“RANdom SAmple Consensus”的缩写。该算法根据一系列观察得到的数据,数据中包含异常值,估算一个数学模型的参数值。
求解线性方程组(Solving a system of linear equations)——线性方程组是数学中最古老的问题,它们有很多应用,比如在数字信号处理、线性规划中的估算和预测、数值分析中的非线性问题逼近等等。求解线性方程组,可以使用高斯—约当消去法(Gauss-Jordan elimination),或是柯列斯基分解( Cholesky decomposition)。
Q-learning学习算法——这是一种通过学习动作值函数(action-value function)完成的强化学习算法,函数采取在给定状态的给定动作,并计算出期望的效用价值,在此后遵循固定的策略。
Schönhage-Strassen算法——在数学中,Schönhage-Strassen算法是用来完成大整数的乘法的快速渐近算法。其算法复杂度为:O(N log(N) log(log(N))),该算法使用了傅里叶变换。
RSA——公钥加密算法。首个适用于以签名作为加密的算法。RSA在电商行业中仍大规模使用,大家也相信它有足够安全长度的公钥。
Strukturtensor算法——应用于模式识别领域,为所有像素找出一种计算方法,看看该像素是否处于同质区域( homogenous region),看看它是否属于边缘,还是是一个顶点。
单纯型算法(Simplex Algorithm)——在数学的优化理论中,单纯型算法是常用的技术,用来找到线性规划问题的数值解。
奇异值分解(Singular value decomposition,简称SVD)——在线性代数中,SVD是重要的实数或复数矩阵的分解方法,在信号处理和统计中有多种应用,比如计算矩阵的伪逆矩阵(以求解最小二乘法问题)、解决超定线性系统(overdetermined linear systems)、矩阵逼近、数值天气预报等等。
维特比算法(Viterbi algorithm)——寻找隐藏状态最有可能序列的动态规划算法,这种序列被称为维特比路径,其结果是一系列可以观察到的事件,特别是在隐藏的Markov模型中。
程序包含算法,算法就是程序的灵魂,一个需要实现特定功能的程序,实现它的算法可以有很多种,所以算法的优劣决定着程序的好坏。程序员很熟练的掌握了程序设计语言的语法,进行程序设计,软件开发的时候就是设计好的算法,加上软件工程的 理论才能做出较好的系统。
算法是指解决问题的一种方法或一个过程。
算法是若干指令的有穷序列,满足性质:
(1)输入:由外部提供的量作为算法的输入。
(2)输出:算法产生至少一个量作为输出。
(3)确定性:组成算法的每条指令是清晰,无歧义的。
(4)有限性:算法中每条指令的执行次数是有限的,执行每条指令的时间也是有限的。
3程序是算法用某种程序设计语言的具体实现。
程序可以不满足算法的性质。
例如 *** 作系统,是一个在无限循环中执行的程序,因而不是一个算法。
*** 作系统的各种任务可看成是单独的问题,每一个问题由 *** 作系统中的一个子程序通过特定的算法来实现。该子程序得到输出结果后便终止。
算法是指解决问题的一种方法或一个过程。算法是若干指令的有穷序列,满足:输入、输出、确定性、有限性性质。程序是算法用某种程序设计语言的具体实现,程序可以不满足算法的性质。
算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。
算法中的指令描述的是一个计算,当其运行时能从一个初始状态和初始输入开始,经过一系列有限而清晰定义的状态,最终产生输出并停止于一个终态。一个状态到另一个状态的转移不一定是确定的。随机化算法在内的一些算法,包含了一些随机输入。
常用的算法有:递推法、贪心法、列举法、递归法、分治法和模拟法
原则:1 扎实的基础。数据结构、离散数学、编译原理,这些是所有计算机科学的基础,如果不掌握他们,很难写出高水平的程序。据我的观察,学计算机专业的人比学其他专业的人更能写出高质量的软件。程序人人都会写,但当你发现写到一定程度很难再提高的时候,就应该想想是不是要回过头来学学这些最基本的理论。不要一开始就去学OOP,即使你再精通OOP,遇到一些基本算法的时候可能也会束手无策。
2 丰富的想象力。不要拘泥于固定的思维方式,遇到问题的时候要多想几种解决问题的方案,试试别人从没想过的方法。丰富的想象力是建立在丰富的知识的基础上,除计算机以外,多涉猎其他的学科,比如天文、物理、数学等等。另外,多看科幻**也是一个很好的途径。
3 最简单的是最好的。这也许是所有科学都遵循的一条准则,如此复杂的质能互换原理在爱因斯坦眼里不过是一个简单得不能再简单的公式:E=mc2。简单的方法更容易被人理解,更容易实现,也更容易维护。遇到问题时要优先考虑最简单的方案,只有简单方案不能满足要求时再考虑复杂的方案。
4 不钻牛角尖。当你遇到障碍的时候,不妨暂时远离电脑,看看窗外的风景,听听轻音乐,和朋友聊聊天。当我遇到难题的时候会去玩游戏,而且是那种极暴力的打斗类游戏,当负责游戏的那部分大脑细胞极度亢奋的时候,负责编程的那部分大脑细胞就得到了充分的休息。当重新开始工作的时候,我会发现那些难题现在竟然可以迎刃而解。
5 对答案的渴求。人类自然科学的发展史就是一个渴求得到答案的过程,即使只能知道答案的一小部分也值得我们去付出。只要你坚定信念,一定要找到问题的答案,你才会付出精力去探索,即使最后没有得到答案,在过程中你也会学到很多东西。
6 多与别人交流。三人行必有我师,也许在一次和别人不经意的谈话中,就可以迸出灵感的火花。多上上网,看看别人对同一问题的看法,会给你很大的启发。
7 良好的编程风格。注意养成良好的习惯,代码的缩进编排,变量的命名规则要始终保持一致。大家都知道如何排除代码中错误,却往往忽视了对注释的排错。注释是程序的一个重要组成部分,它可以使你的代码更容易理解,而如果代码已经清楚地表达了你的思想,就不必再加注释了,如果注释和代码不一致,那就更加糟糕。
8 韧性和毅力。这也许是"高手"和一般程序员最大的区别。A good programming is 99 weat and 1 ffee。高手们并不是天才,他们是在无数个日日夜夜中磨练出来的。成功能给我们带来无比的喜悦,但过程却是无比的枯燥乏味。你不妨做个测试,找个10000以内的素数表,把它们全都抄下来,然后再检查三遍,如果能够不间断地完成这一工作,你就可以满足这一条。
希望对你有帮助
算法简单的说就是解决一个问题的具体方法比如我在家要去外面买一瓶饮料那么算法是(看具体情况而定)如果是我 步骤: 1穿鞋子 2拿钱 3,走到商店 4买一瓶饮料(更具体可分为拿饮料,付钱) 5,回到家 6脱鞋这就是个算法 这个算法包含了6个步骤 类似的 当这些运用编程来解决的时候 就称之为算法 然后再用编程语言把 算法表示成 计算机能执行的语言 就变成了一个解决问题的 程序 程序若大则可称之为软件了
算法(Algorithm)是对问题求解方法的精确描述
,也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用
空间复杂度
与
时间复杂度
来衡量。
算法可以理解为有基本运算及规定的运算顺序所构成的完整的解题步骤。或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤和序列可以解决一类问题。
一个算法应该具有以下五个重要的特征:
1、
有穷性
:
一个算法必须保证执行有限步之后结束;
2、
明确性
:
算法的每一步骤必须意义明确;
3、
输入
:一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定除了初始条件;
4、
输出
:一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的;
5、
可执行性
:
所采用的算法必须能够在计算机上执行。
计算机科学家尼克劳斯-沃思曾著过一本著名的书《数据结构十算法=
程序》,可见算法在计算机科学界与计算机应用界的地位。
以上就是关于C语言中算法是程序的什么全部的内容,包括:C语言中算法是程序的什么、c语言问题: 什么是算法试从日常生活中找3个例子,描述它们的算法。 详细点,谢谢!、程序员必须掌握哪些算法等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)