步进电机,arduino新手,程序怎样设定总步数,这样的配件如何正反转停止,求程序,用按钮控制

步进电机,arduino新手,程序怎样设定总步数,这样的配件如何正反转停止,求程序,用按钮控制,第1张

这里我们以TB6600步进电机驱动器为例,进行介绍。其他型号的驱动器也大同小异。如图是我们使用的步进电机驱动器

一输入输出端说明

1信号输入端

PUL+:脉冲信号输入正。

PUL-:脉冲信号输入负。

DIR+:电机正、反转控制正。

DIR-:电机正、反转控制负。

EN+:电机脱机控制正。

EN-:电机脱机控制负。

2电机线连接段

A+:连接电机绕组A+相。

A-:连接电机绕组A-相。

B+:连接电机绕组B+相。

B-:连接电机绕组B-相。

3电源电压连接

VCC:电源正端“+”

GND:电源负端“-” (需要注意的是电机驱动器上DC电源还是AC,DC只能接入直流电源,而AC的话既交流又可以直流电源)

4输入端接线说明

输入信号共有三路,它们是:①步进脉冲信号PUL+,PUL-;②方向电平信 号DIR+ ,DIR-③脱机信号EN+,EN-。

输入信号接口有两种接法,用户可根据 需要采用共阳极接法或共阴极接法。

共阳极接法:分别将PUL+,DIR+,EN+连接到控制系统的电源上, 如果此电源是+5V 则可直接接入,

如果此电源大于+5V,则须外部另加限流 电阻R,保证给驱动器内部光藕提供8—15mA 的驱动电流。

脉冲输入信号通 过CP-接入,方向信号通过DIR-接入,使能信号通过EN-接入。如下图:

共阴极接法:分别将 PUL-,DIR-,EN-连接到控制系统的地端; 脉冲输入信号通过PUL+接入,方向信号通过DIR+接入,

使能信号通过EN+接 入。若需限流电阻,限流电阻R 的接法取值与共阳极接法相同。如下图:

这里需要注意的是:在一般情况下EN端可不接,EN有效时电机转子处于自由状态(脱机状态),这时 可以手

动转动电机转轴,做适合您的调节。手动调节完成后,再将 EN 设为 无效状态,以继续自动控制 。

二、系统接线方法

驱动器与控制器、电机、电源的接线,以共阳接法为例,如下图所示:

三、拨码开关的设定细分以及电流

1细分数设定

细分数是以驱动板上的拨码开关选择设定的,用户可根据驱动器外盒上 的细分选择表的数据设定(最好在断电情况下设定)。细分后步进

电机步距 角按下列方法计算:步距角=电机固有步距角/细分数。如:一台固有步距角 为18°的步进电机在4细分下步距角为18°/4=045°

驱动板上拨码开关1、2、3、分别对应S1、S2、S3 (这里需要注意的是并不是设置细分数越大越好,400细分的意思就是:400个脉冲电机转动1圈)

2电流大小设定

驱动板上拨码开关4、5、6分别对应S4、S5、S6

(这里需要注意的是并不是设置电流越大越好,根据电机的功率取合适值即可)

四、脱机信号(EN)

打开脱机功能后,电机转子处于自由不锁定状态,可以轻松转动,此时 输入脉冲信号不响应,

关闭此信号后电机接受脉冲信号正常运转。

注:一般在实际应用中可不接。

五、常见的问题解答

1、问:初次使用该步进驱动器,如何能尽快上手?

答:正确接好电源和电机后,只接脉冲信号PUL(先将频率设置为1K以内),细分设置为16,方向和脱机悬空,

此时加电后电机默认正转。运行无误后再 依次测试加速(提高频率)、方向、细分和脱机等功能。

2、问:控制信号高于5V,一定要加串联电阻吗?

答:是的,否则有可能烧毁驱动器控制接口的电路。

3、问:接线后电源指示灯亮,但电机不转,是什么原因?

答:如果接线正确,但仍然不转,说明控制部分驱动能力不够,这种情况多出现在

用单片机的io口直接控制方式。请确保控制接口有5mA的驱动能力

4、问:如何判断步进电机四条线的定义

答:将电机的任意两条线接在一起,此时用手拧电机转子有阻力,则这两条线是同一相,

可接在驱动器A+、A-;另外两条线短接仍然有阻力,则将 这两条线接在B+和B-

5、问:电机的正反转情况与应实际达到的相反?

答:只需要把电机其中一相的两根线互换接入即可

六、自己本人在实践中遇到的问题以及解决

只是根据实验尝试而得,并不一定正确

1电机旋转电流吱吱声音过大 PWM频率过低 改变方法提高频率或者减少细分数

2驱动器自动断电时 设置电流过大,应该降低设置电流

3电流设置会影响转速

4电机过烫,设置的电流过大,应该降低设置电流

5ENA-和ENA+不接,这是脱机信号控制

6PWM输出都采用开漏输出,需要外接上拉5V,不然没有PWM输出

7当选择电机转速较慢时,应该选择更多的细分数

     假设您使用无线串口控制小车,那么你需要设计一个串口指令协议,一般来说,通信协议的数据帧包括3部分,一是指令头,又叫做帧同步字;二是指令内容,也叫帧内容;三是校验码。

     同步字是为了便于程序分析连续传输的数据中,帧与帧之间的间隔,帧内容包含了所有经过16进制编码的各种控制指令和数据,校验码通常采用累加和与异或算法,为了计算本数据帧是否正确。(工业环境中,所有数据传输系统都存在一定的误码干扰,校验字能有效判别数据传输是否正确,进而通过错误处理机制,有效避免错误动作)。

     刚好前段时间写了个小车的控制程序,使用的是双路H桥来驱动电机的,不过不是控制履带式的,稍微改动了下。

  (注意,本程序仅适用于履带式小车,即左右电机正反转实现前后及转向,程序支持前后左右混控)

//

// 遥控帧协议和结构

// FB|80|51|AA|FF|BB|FF|BY|BY|BY|BY|BY|BY|CR

// 00|01|02|03|04|05|06|07|08|09|10|11|12|13

// 14 byte

//FB 80 51 遥控帧同步字                 00-02

//AA 前后控制量 128为中立位             03

//FF 恒定为0xFF                         04

//BB 左右控制量 128为中立位             05

//FF 恒定为0xFF                         06

//BY 备用控制指令 本程序为空            07-12

//CR 校验码,从00至12字节逐字节位异或   13

//

// 遥测帧协议结构

// FB|80|61|AA|FF|BB|FF|BY|BY|BY|BY|BY|BY|CR

// 00|01|02|03|04|05|06|07|08|09|10|11|12|13

// 14 byte

// 重复遥控指令,除帧头外,其定义与遥控指令相同

#define BR 9600       //定义串口波特率

//遥控指令接收处理相关定义

#define TCDL 14       //定义遥控数据帧长度字节数

#define BUFF_LONG 30  //定义串口接收缓存的长度

byte BUFF[BUFF_LONG]; //定义串口数据接收存储缓存

int BUFF_IDX = 0;     //定义串口数据接收存储缓存的指针

//遥测指令发送处理相关定义

#define TMFQ 80         //定义遥测数据帧发送间隔为80ms

#define TMDL 14         //定义遥测数据帧长度字节数

byte TM_Data[TMDL];     //定义遥测数据缓存

int TM_Index = 0;       //定义遥测数据指针

unsigned long Time = 0; //定义遥测发送计时器为0

//定义左、右电机与Arduino的驱动信号接口

//注意,这里用了4个PWM输出,部分Arduino板可能不支持,请查看手册

int Moto_Right_A = 3;

int Moto_Right_B = 5;

int Moto_Left_A = 6;

int Moto_Left_B = 9;

//数据接收指示灯相关定义

boolean IS_Blink = false;     //定义是否闪烁LED灯的变量

int LED = 13;         //定义LED灯接口为13

//指令变量定义

byte RunPWM = 128;   //定义前进、后退控制PWM指令变量

byte TurnPWM = 128;  //定义左转、右转控制PWM指令变量

void setup()

{

pinMode(Moto_Right_A, OUTPUT); //定义输出

pinMode(Moto_Right_B, OUTPUT); //定义输出

pinMode(Moto_Left_A, OUTPUT); //定义输出

pinMode(Moto_Left_B, OUTPUT); //定义输出

pinMode(LED, OUTPUT); //定义LED管脚为数字输出

Port_Init();  //初始化串口

Blink_LED(false); //关闭指示灯

}

void loop()

{

byte c;

if (Serialavailable() > 0)  //如果接收到串口数据

{

  c = Serialread();   //读一个字节

  Buff_AddChar(c);     //塞进缓存进行存储、校验和解码

}

TM_Freq();             //尝试按要求逐字节发送遥测数据

Driver_CAR(RunPWM, TurnPWM); //驱动左右电机正反转,实现运动控制

}

//驱动左右电机调速运行,实现左右正反转组合,实现控制

//前后、左右混控

void Driver_CAR(byte Run, byte Turn)

{

byte Run_L, Run_R;  //定义左右前进混合值

byte PWM_R_A, PWM_R_B, PWM_L_A, PWM_L_B; // 定义4个信号的独立PWM

Run_L = Run - (128 - Turn);  //将转向PWM混合到左路

Run_R = Run - (Turn - 128);  //将转向PWM混合到右路

PWM_L_A = (255 / 128) Run_L - 255;         //左路混合值结算为左路A信号PWM

PWM_L_B = (-1 255 / 128) Run_L + 255;    //左路混合值结算为左路B信号PWM

PWM_R_A = (255 / 128) Run_R - 255;         //右路混合值结算为右路A信号PWM

PWM_R_B = (-1 255 / 128) Run_R + 255;    //右路混合值结算为右路B信号PWM

analogWrite(Moto_Right_A, PWM_R_A);    //输出右路A信号

analogWrite(Moto_Right_B, PWM_R_B);    //输出右路B信号

analogWrite(Moto_Left_A, PWM_L_A);     //输出左路A信号

analogWrite(Moto_Left_B, PWM_L_B);     //输出左路B信号

}

//

//子程序 Port_Init()

//功能:初始化串口通信

void Port_Init()

{

BUFF_IDX = 0;  //初始化串口缓存指针为0

TM_Data[0] = 0xFB;  //初始化遥测数据帧头

TM_Data[1] = 0x80;  //初始化遥测数据帧头

TM_Data[2] = 0x61;  //初始化遥测数据帧头

Serialbegin(BR);  //定义波特率并启动串口

}

//

// 子程序 Buff_AddChar(byte b)

// 功能:串口接收字节加入缓存

// 1、加入字节到缓存;

// 2、检测到帧头则尝试检测遥控帧;

// 3、管理缓存指针

void Buff_AddChar(byte b)

{

BUFF[BUFF_IDX] = b;  //  缓存[缓存指针] = 接收字节

if (BUFF_IDX >= 2)

{

  if (BUFF[BUFF_IDX] == 0x51 && BUFF[BUFF_IDX - 1] == 0x80 && BUFF[BUFF_IDX - 2] == 0xFB) //  检测遥控帧头

  {

    if (BUFF_IDX == (TCDL - 1))

    {

      Buff_DCHK();  //  检测校验码

    }

    BUFF_IDX = 0;  //  缓存指针归零

    return;

  }

}

BUFF_IDX++;

if (BUFF_IDX > (BUFF_LONG - 1)) //  缓存指针越界

{

  BUFF_IDX = 0;  //  缓存指针归零

}

}

//

//子程序 Buff_DCHK()

//功能:校验遥控帧校验字是否正确

void Buff_DCHK()

{

byte DCHK = 0x00;

// 0xFB XOR 0x80 XOR 0x51

DCHK = BUFF[0];

DCHK = DCHK ^ BUFF[1];

DCHK = DCHK ^ BUFF[2];

int i;

for (i = 0; i < (TCDL - 4); i++)

{

  DCHK = DCHK ^ BUFF[i];

}

if (DCHK == BUFF[TCDL - 4])

{

  //校验字正确

  Blink_LED(true); //闪烁LED

  Get_CMD();       //解码指令

}

}

//

// 子程序 Get_CMD()

// 功能:解码遥控指令

void Get_CMD()

{

RunPWM = BUFF[0];

TurnPWM = BUFF[2];

//后面可以自己添加关于BY指令的解码处理

}

//

//子程序 TM_Freq()

//功能:遥测数据发送帧率控制

void TM_Freq()

{

unsigned long t;

if (TM_Index < TMDL) //如果一帧数据还没有发完

{

  Serialwrite(TM_Data[TM_Index]); //继续发数据

  TM_Index++;  //指针累加

}

else  //如果发完

{

  if (Time == 0)  //检测计时器是否为0

  {

    Time = millis(); //是则赋予计时器初始值

  }

  else  //不是

  {

    t = millis();

    if (t - Time >= TMFQ) //检测计时器是否到达帧率控制的时间

    {

      Time = t;

      TM_Make_Data();    //到达发送时间,则组一帧遥测数据,并开始发送

    }

  }

}

}

//

// 子程序 TM_Make_Data()

// 功能:发送遥测数据

void TM_Make_Data()

{

// 遥测帧协议结构

//FB|80|61|AA|FF|BB|FF|BY|BY|BY|BY|BY|BY|CR

//00|01|02|03|04|05|06|07|08|09|10|11|12|13

byte CHK = 0xFB;  //赋值帧头

CHK = CHK ^ 0x80; //赋值帧头

CHK = CHK ^ 0x61; //赋值帧头

TM_Data[3] = RunPWM;    //回写前后指令

TM_Data[4] = 0xFF;

CHK = CHK ^ TM_Data[3]; //计算校验码

CHK = CHK ^ TM_Data[4]; //计算校验码

TM_Data[5] = TurnPWM;   //回写转向指令

TM_Data[6] = 0xFF;

CHK = CHK ^ TM_Data[5]; //计算校验码

CHK = CHK ^ TM_Data[6]; //计算校验码

CHK = CHK ^ TM_Data[7]; //计算校验码

CHK = CHK ^ TM_Data[8]; //计算校验码

CHK = CHK ^ TM_Data[9]; //计算校验码

CHK = CHK ^ TM_Data[10]; //计算校验码

CHK = CHK ^ TM_Data[11]; //计算校验码

CHK = CHK ^ TM_Data[12]; //计算校验码

TM_Data[13] = CHK; //计算校验码

TM_Index = 0; //清除遥测发送指针位置

}

//

//子程序 Blink_LED()

//功能:闪烁内置LED灯

void Blink_LED(boolean Blink)

{

if (Blink == false)

{

  IS_Blink = false;

}

else

{

  IS_Blink = !IS_Blink;

}

digitalWrite(LED, IS_Blink);

}

以上就是关于步进电机,arduino新手,程序怎样设定总步数,这样的配件如何正反转停止,求程序,用按钮控制全部的内容,包括:步进电机,arduino新手,程序怎样设定总步数,这样的配件如何正反转停止,求程序,用按钮控制、哪位大神能帮我写一个arduino 控制两个直流电机正反转,加减速和拐弯的程序啊arduino程序,非常感谢。、等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/9742857.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-01
下一篇 2023-05-01

发表评论

登录后才能评论

评论列表(0条)

保存