G71 外圆粗车循环(G71)
指令格式: G71 X(U) I K L F ;
其中:X(U)—精加工轮廓起点的X轴坐标值
I---X轴方向每次进刀量,直径值表示,无符号数
K---X轴方向每次退刀量,直径值表示,无符号数
L---描述最终轨迹的程序段数量(不包括自身)范围:1-99
F---切削速度
内外圆粗车复合循环
循环执行过程
X轴快速进给I的距离
Z轴切削进给,进给终点由系统自动计算
X轴以F速度退K的距离
Z轴快速退回起点
X轴进给I+K的距离
重复2-5的过程直到X方向到达指令中X指令的位置
G71是数控加工技术指令中的外圆粗车复合循环指令
格式:G71 U(△d) R(r) P(ns) Q(nf) E(e) F(f) S(s) T(t)
说明:
G71 U (Δd) R(e)
G71 P(ns) Q(nf) U(Δu) W(Δw) F(f) S(s) T(t)
其中:
Δd为背吃刀量;
e为退刀量;
ns为精加工轮廓程序段中开始段的段号;
nf为精加工轮廓程序段中结束段的段号;
Δu为留给X轴方向的精加工余量;(直径值)
Δw为留给Z轴方向的精加工余量;
f、s、t为粗车时的进给量、主轴转速及所用刀具。而精加工时处于ns到nf程序段之内的F、S、T有效。
数控编程的内容与步骤
在普通机床上加工零件时,首先应由工艺人员对零件进行工艺分析,制定零件加工的工艺规程,包括机床、刀具、定位夹紧方法及切削用量等工艺参数。同样,在数控机床上加工零件时,也必需对零件进行工艺分析,制定工艺规程,同时要将工艺参数、几何图形数据等,按规定的信息格式记录在控制介质上,将此控制介质上的信息输入到数控机床的数控装置,由数控装置控制机床完成零件的全部加工。我们将从零件图样到制作数控机床的控制介质并校核的全部过程称为数控加工的程序编制,简称数控编程。数控编程是数控加工的重要步骤。理想的加工程序不仅应保证加工出符合图样要求的合格零件,同时应能使数控机床的功能得到合理的利用与充分的发挥,以使数控机床能安全可靠及高效地工作。
一般来讲,数控编程过程的主要内容包括:分析零件图样、工艺处理、数值计算、编写加工程序单、制作控制介质、程序校验和首件试加工
数控编程的具体步骤与要求如下:
1.分析零件图
首先要分析零件的材料、形状、尺寸、精度、批量、毛坯形状和热处理要求等,以便确定该零件是否适合在数控机床上加工,或适合在哪种数控机床上加工。同时要明确加工的内容和要求。
2.工艺处理
在分析零件图的基础上,进行工艺分析,确定零件的加工方法(如采用的工夹具、装夹定位方法等)、加工路线(如对刀点、换刀点、进给路线)及切削用量(如主轴转速、进给速度和背吃刀量等)等工艺参数。数控加工工艺分析与处理是数控编程的前提和依据,而数控编程就是将数控加工工艺内容程序化。制定数控加工工艺时,要合理地选择加工方案,确定加工顺序、加工路线、装夹方式、刀具及切削参数等;同时还要考虑所用数控机床的指令功能,充分发挥机床的效能;尽量缩短加工路线,正确地选择对刀点、换刀点,减少换刀次数,并使数值计算方便;合理选取起刀点、切入点和切入方式,保证切入过程平稳;避免刀具与非加工面的干涉,保证加工过程安全可靠等。有关数控加工工艺方面的内容,我们将在第2章23节及24节中作详细介绍。
3.数值计算
根据零件图的几何尺寸、确定的工艺路线及设定的坐标系,计算零件粗、精加工运动的轨迹,得到刀位数据。对于形状比较简单的零件(如由直线和圆弧组成的零件)的轮廓加工,要计算出几何元素的起点、终点、圆弧的圆心、两几何元素的交点或切点的坐标值,如果数控装置无刀具补偿功能,还要计算刀具中心的运动轨迹坐标值。对于形状比较复杂的零件(如由非圆曲线、曲面组成的零件),需要用直线段或圆弧段逼近,根据加工精度的要求计算出节点坐标值,这种数值计算一般要用计算机来完成。有关数值计算的内容,我们将在第3章中详细介绍。
4.编写加工程序单
根据加工路线、切削用量、刀具号码、刀具补偿量、机床辅助动作及刀具运动轨迹,按照数控系统使用的指令代码和程序段的格式编写零件加工的程序单,并校核上述两个步骤的内容,纠正其中的错误。
5.制作控制介质
把编制好的程序单上的内容记录在控制介质上,作为数控装置的输入信息。通过程序的手工输入或通信传输送入数控系统。
6.程序校验与首件试切
编写的程序单和制备好的控制介质,必须经过校验和试切才能正式使用。校验的方法是直接将控制介质上的内容输入到数控系统中,让机床空运转,以检查机床的运动轨迹是否正确。在有CRT图形显示的数控机床上,用模拟刀具与工件切削过程的方法进行检验更为方便,但这些方法只能检验运动是否正确,不能检验被加工零件的加工精度。因此,要进行零件的首件试切。当发现有加工误差时,分析误差产生的原因,找出问题所在,加以修正,直至达到零件图纸的要求。
数控编程的方法
数控编程一般分为手工编程和自动编程两种。
1.手工编程
手工编程就是从分析零件图样、确定加工工艺过程、数值计算、编写零件加工程序单、制作控制介质到程序校验都是人工完成。它要求编程人员不仅要熟悉数控指令及编程规则,而且还要具备数控加工工艺知识和数值计算能力。对于加工形状简单、计算量小、程序段数不多的零件,采用手工编程较容易,而且经济、及时。因此,在点位加工或直线与圆弧组成的轮廓加工中,手工编程仍广泛应用。对于形状复杂的零件,特别是具有非圆曲线、列表曲线及曲面组成的零件,用手工编程就有一定困难,出错的概率增大,有时甚至无法编出程序,必须用自动编程的方法编制程序。
2.自动编程
自动编程是利用计算机专用软件来编制数控加工程序。编程人员只需根据零件图样的要求,使用数控语言,由计算机自动地进行数值计算及后置处理,编写出零件加工程序单,加工程序通过直接通信的方式送入数控机床,指挥机床工作。自动编程使得一些计算繁琐、手工编程困难或无法编出的程序能够顺利地完成。有关自动编程的内容,将在第7章中作详细的介绍。
FANUC系统数控车床螺纹切削指令(华中、广州数控和FANUC系统几乎一样)
G32 X F ;
G32 Z F ;(X、Z是目标点坐标,F是螺距,属于单一程序段走刀,和G01路线相似,一个程序段一个动作)
G92 X Z F ;
X ;
X ;(X、Z是目标点坐标,F是螺距,属于单一循环走刀,一程序段有进刀、车削、退刀、返回四个动作)
G76是螺纹切削复合循环,一个程序段多个动作,直到车削到X和Z终点结束,格式和含义如下
G76 P020060 Q150 R003;
G76 X Z P Q R F ;
(第一行可以套用,Q是每次吃刀量,单位微米。R是精车余量,半径值)
第二行:X、Z是目标点坐标,P是牙型高(P的单位是微米,例如P1000表示1mm),Q是第一刀的吃刀量(单位是微米,例如Q150表示015mm),R是你螺纹编程的螺纹起点与终点的半径差,F是螺距(导程)。
G76 P m rα QΔdmin Rd;
G76 X(U) Z(W) Ri Pk QΔd Ff;
说明:m:精加工重复次数(01~99);
r:斜向退刀量(001~99f)以01f为一档,可用00~99两位数字指定;
α:刀尖角度,可选80°、60°、55°、30°、0°共六种,用两位数指定;
Δdmin:最小切削深度;
d:精加工余量;
X(U) Z(W):螺纹终点坐标;
i:圆锥螺纹半径差,如果i=0为圆柱螺纹,;
k:螺纹牙高(方向半径值),通常为正,以无小数点形式表示;
Δd:第一次粗切深(半径指定),以无小数点形式表示;
f:螺纹导程。
第二种格式
G76X(U)__Z(W)__I__K__D__F__A__;
其中X、Z 为螺纹终点坐标值;
U、W :为螺纹终点相对循环起点的坐标增量;
I :为锥螺纹始点与终点的半径差,当I为0时, 加工圆柱螺纹;
K :为螺纹牙型高度(半径值),通常为正值;
D :为第一次进给的背吃刀量(半径值),通常为正值;
F :指令螺纹导程;
A :为螺纹牙型角。
以上就是关于g71程序怎么编程全部的内容,包括:g71程序怎么编程、怎样学习数控编程序、数控车车削螺纹红程序谁会编,必有重谢等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)