算法与程序_算法与程序的区别

算法与程序_算法与程序的区别,第1张

算法程序

(1)一个程序不一定满足有穷性。例 *** 作系统,只要整个系统不遭破坏,它将永远不会停止,即使没有作业需要处理,它仍处于动态等待中。因此, *** 作系统不是一个算法

(2)程序中的指令必须是机器可执行的,而算法中的指令则无此限制。

(3)算法代表了对问题的解,而程序则是算法在计算机上的特定的实现。一个算法若用程序设计语言来描述,则它就是一个程序

算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。

一个算法应该具有以下五个重要的特征:

有穷性(Finiteness)

算法的有穷性是指算法必须能在执行有限个步骤之后终止;

确切性(Definiteness)

算法的每一步骤必须有确切的定义;

输入项(Input)

一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定出了初始条件;

输出项(Output)

一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的;

可行性(Effectiveness)

算法中执行的任何计算步骤都是可以被分解为基本的可执行的 *** 作步,即每个计算步都可以在有限时间内完成(也称之为有效性)。

算法和程序的关系是:

算法就是程序的灵魂,一个需要实现特定功能的程序,实现它的算法可以有很多种,所以算法的优劣决定着程序的好坏。

程序就是遵循一定规则的、为完成指定工作而编写的代码。有一个经典的等式阐明了什么叫程序:程序

=

算法

+

数据结构

+

程序设计方法

+

语言工具和环境

算法是为一个问题或一类问题给出的解决方法与具体步骤,是对问题求解过程的一种准确而完整的逻辑描述。程序则是为了用计算机解题或控制某一过程而编排的一系列指令的集合。程序不等于算法。但是,通过程序设计可以在计算机上实现算法。

你可能解答过一个有趣的问题人、狼、羊过河问题。有个人带着三只狼、三只羊,要过河去。有一条小船。船上除了运载一个人外,至多再载狼或羊中的任意两只。但难点是:当人不在场时,如果狼的数量大于等于羊的数量,那么羊会被狼吃掉。为了安全过河,你有什么办法呢?

解决它的算法有多个,其中一个解决方案是这样的:

开始,运一只狼过河,空船回来;

接着,运一只狼和一只羊再过河,到对岸后,再运两只狼回来;

然后,运两只羊过河,空船回来;

最后,分两次将狼全部运过河;

由此,过河问题就得以解决了。

可见,算法是为一个问题或一类问题给出的解决方法与具体步骤,是对问题求解过程的一种准确而完整的逻辑描述。它由有限步骤的 *** 作序列组成,代表着用系统的方法描述解决问题的策略机制。

算法是一组严谨定义运算顺序的规则,每一个规则都是有效的、明确的,此顺序必须在有限的次数下终止。在上面的过河问题中,如果第一步中改为:运一只狼过河,再运这只狼回来,那么,说明人没找到好办法,在反复进行无用 *** 作。此类算法,是失败的,永远也实现不了既定目标。

算法描述,一般可以使用汉、英等自然语言,比较通俗易懂。也可以使用流程图、伪代码表格等其他工具。

在古代,算法通常用于数值计算。中国古代的筹算口诀、珠算口诀及其执行规则就是算法的雏形。它所解决的是数值计算问题。现代算法,已超出数值计算范围。

程序则是为了用计算机解题或控制某一过程而编排的一系列指令的集合。这些指令,可以是计算机的机器指令,也可以是汇编语言和高级程序设计语言。

程序不等于算法。但是,通过程序设计可以在计算机上实现算法。在实际应用中,也许只需一条(组)程序设计语句,就可以完成算法的基本要素处理,包括数据对象的运算和 *** 作,以及顺序、选择、循环结构的控制。通过程序模块设计,可以实现算法中的递推、递归、迭代等一系列基本算法,也包括形式演绎、数据结构、数论图论、加密解密、科学决策等复杂算法。

因此,运用计算机解决问题的过程,通常可以分成三个阶段:分析问题、设计算法和编制程序实现算法。由于计算机运算速度快,存储数据量大,大大提高了算法实现效率。

贪心是人类自带的能力,贪心算法是在贪心决策上进行统筹规划的统称。

比如一道常见的算法笔试题---- 跳一跳

我们自然而然能产生一种解法:尽可能的往右跳,看最后是否能到达。

本文即是对这种贪心决策的介绍。

狭义的贪心算法指的是解最优化问题的一种特殊方法,解决过程中总是做出当下最好的选择,因为具有最优子结构的特点,局部最优解可以得到全局最优解;这种贪心算法是动态规划的一种特例。 能用贪心解决的问题,也可以用动态规划解决。

而广义的贪心指的是一种通用的贪心策略,基于当前局面而进行贪心决策。以 跳一跳 的题目为例:

我们发现的题目的核心在于 向右能到达的最远距离 ,我们用maxRight来表示;

此时有一种贪心的策略:从第1个盒子开始向右遍历,对于每个经过的盒子,不断更新maxRight的值。

贪心的思考过程类似动态规划,依旧是两步: 大事化小 小事化了

大事化小:

一个较大的问题,通过找到与子问题的重叠,把复杂的问题划分为多个小问题;

小事化了:

从小问题找到决策的核心,确定一种得到最优解的策略,比如跳一跳中的 向右能到达的最远距离

在证明局部的最优解是否可以推出全局最优解的时候,常会用到数学的证明方式。

如果是动态规划:

要凑出m元,必须先凑出m-1、m-2、m-5、m-10元,我们用dp[i]表示凑出i元的最少纸币数;

有 dp[i]=min(dp[i-1], dp[i-2], dp[i-5], dp[i-10]) + 1 ;

容易知道 dp[1]=dp[2]=dp[5]=dp[10]=1 ;

根据以上递推方程和初始化信息,可以容易推出dp[1~m]的所有值。

似乎有些不对? 平时我们找零钱有这么复杂吗?

从贪心算法角度出发,当m>10且我们有10元纸币,我们优先使用10元纸币,然后再是5元、2元、1元纸币。

从日常生活的经验知道,这么做是正确的,但是为什么?

假如我们把题目变成这样,原来的策略还能生效吗?

接下来我们来分析这种策略:

已知对于m元纸币,1,2,5元纸币使用了a,b,c张,我们有a+2b+5c=m;

假设存在一种情况,1、2、5元纸币使用数是x,y,z张,使用了更少的5元纸币(z<c),且纸币张数更少(x+y+z<a+b+c),即是用更少5元纸币得到最优解。

我们令k=5(c-z),k元纸币需要floor(k/2)张2元纸币,k%2张1元纸币;(因为如果有2张1元纸币,可以使用1张2元纸币来替代,故而1元纸币只能是0张或者1张)

容易知道,减少(c-z)张5元纸币,需要增加floor(5(c-z)/2)张2元纸币和(5(c-z))%2张纸币,而这使得x+y+z必然大于a+b+c。

由此我们知道不可能存在使用更少5元纸币的更优解。

所以优先使用大额纸币是一种正确的贪心选择。

对于1、5、7元纸币,比如说要凑出10元,如果优先使用7元纸币,则张数是4;(1+1+1+7)

但如果只使用5元纸币,则张数是2;(5+5)

在这种情况下,优先使用大额纸币是不正确的贪心选择。(但用动态规划仍能得到最优解)

如果是动态规划:

前i秒的完成的任务数,可以由前面1~i-1秒的任务完成数推过来。

我们用 dp[i]表示前i秒能完成的任务数

在计算前i秒能完成的任务数时,对于第j个任务,我们有两种决策:

1、不执行这个任务,那么dp[i]没有变化;

2、执行这个任务,那么必须腾出来(Sj, Tj)这段时间,那么 dp[i] = max(dp[i], dp[ S[j] ] ) + 1 ;

比如说对于任务j如果是第5秒开始第10秒结束,如果i>=10,那么有 dp[i]=max(dp[i], dp[5] + 1); (相当于把第5秒到第i秒的时间分配给任务j)

再考虑贪心的策略,现实生活中人们是如何安排这种多任务的事情?我换一种描述方式:

我们自然而然会想到一个策略: 先把结束时间早的兼职给做了!

为什么?

因为先做完这个结束时间早的,能留出更多的时间做其他兼职。

我们天生具备了这种优化决策的能力。

这是一道 LeetCode题目 。

这个题目不能直接用动态规划去解,比如用dp[i]表示前i个人需要的最少糖果数。

因为(前i个人的最少糖果数)这种状态表示会收到第i+1个人的影响,如果a[i]>a[i+1],那么第i个人应该比第i+1个人多。

即是 这种状态表示不具备无后效性。

如果是我们分配糖果,我们应该怎么分配?

答案是: 从分数最低的开始。

按照分数排序,从最低开始分,每次判断是否比左右的分数高。

假设每个人分c[i]个糖果,那么对于第i个人有 c[i]=max(c[i-1],c[c+1])+1 ; (c[i]默认为0,如果在计算i的时候,c[i-1]为0,表示i-1的分数比i高)

但是,这样解决的时间复杂度为 O(NLogN) ,主要瓶颈是在排序。

如果提交,会得到 Time Limit Exceeded 的提示。

我们需要对贪心的策略进行优化:

我们把左右两种情况分开看。

如果只考虑比左边的人分数高时,容易得到策略:

从左到右遍历,如果a[i]>a[i-1],则有c[i]=c[i-1]+1;否则c[i]=1。

再考虑比右边的人分数高时,此时我们要从数组的最右边,向左开始遍历:

如果a[i]>a[i+1], 则有c[i]=c[i+1]+1;否则c[i]不变;

这样讲过两次遍历,我们可以得到一个分配方案,并且时间复杂度是 O(N)

题目给出关键信息:1、两个人过河,耗时为较长的时间;

还有隐藏的信息:2、两个人过河后,需要有一个人把船开回去;

要保证总时间尽可能小,这里有两个关键原则: 应该使得两个人时间差尽可能小(减少浪费),同时船回去的时间也尽可能小(减少等待)。

先不考虑空船回来的情况,如果有无限多的船,那么应该怎么分配?

答案: 每次从剩下的人选择耗时最长的人,再选择与他耗时最接近的人。

再考虑只有一条船的情况,假设有A/B/C三个人,并且耗时A<B<C。

那么最快的方案是:A+B去, A回;A+C去;总耗时是A+B+C。(因为A是最快的,让其他人来回时间只会更长, 减少等待的原则

如果有A/B/C/D四个人,且耗时A<B<C<D,这时有两种方案:

1、最快的来回送人方式,A+B去;A回;A+C去,A回;A+D去; 总耗时是B+C+D+2A (减少等待原则)

2、最快和次快一起送人方式,A+B先去,A回;C+D去,B回;A+B去;总耗时是 3B+D+A (减少浪费原则)

对比方案1、2的选择,我们发现差别仅在A+C和2B;

为何方案1、2差别里没有D?

因为D最终一定要过河,且耗时一定为D。

如果有A/B/C/D/E 5个人,且耗时A<B<C<D<E,这时如何抉择?

仍是从最慢的E看。(参考我们无限多船的情况)

方案1,减少等待;先送E过去,然后接着考虑四个人的情况;

方案2,减少浪费;先送E/D过去,然后接着考虑A/B/C三个人的情况;(4人的时候的方案2)

到5个人的时候,我们已经明显发了一个特点:问题是重复,且可以由子问题去解决。

根据5个人的情况,我们可以推出状态转移方程 dp[i] = min(dp[i - 1] + a[i] + a[1], dp[i - 2] + a[2] + a[1] + a[i] + a[2]);

再根据我们考虑的1、2、3、4个人的情况,我们分别可以算出dp[i]的初始化值:

dp[1] = a[1];

dp[2] = a[2];

dp[3] = a[2]+a[1]+a[3];

dp[4] = min(dp[3] + a[4] + a[1], dp[2]+a[2]+a[1]+a[4]+a[2]);

由上述的状态转移方程和初始化值,我们可以推出dp[n]的值。

贪心的学习过程,就是对自己的思考进行优化。

是把握已有信息,进行最优化决策。

这里还有一些收集的 贪心练习题 ,可以实践练习。

这里 还有在线分享,欢迎报名。

以上就是关于算法与程序_算法与程序的区别全部的内容,包括:算法与程序_算法与程序的区别、什么是算法,它的五大特性是什么,算法和程序的关系是什么、算法与程序有什么区别等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/9748139.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-01
下一篇 2023-05-01

发表评论

登录后才能评论

评论列表(0条)

保存