要满足这三个条件:
1,单开线程自动写at
2,单开线程读at
3,打开文件读配置,将读出来后的配置文件放到log文件里去。
这边记录下如何在ui下开一个线程的过程:用一个handler变量调用handlerpost函数,然后在runnable里面重写run接口就可以,实际上,这样调用出来的线程跟ui主线程是一个线程,不会创建新的。所以这边如果要用线程创建的话,必须
wthread = new HandlerThread("thread");
wthreadstart();
wHandler = new Handler(wthreadgetLooper());
wHandlerpost(runnable);
这时重写runnable的run函数才可以实现重新开启一个线程。
在这个线程里面可以读写串口,但是界面的刷新不能在这个子线程里面做。必须主线程在做一个handler,然后子线程调用Message 变量传进主线程的handlersendMessage(msg);然后主线程用handlerMessage接收子线程传过来的消息,在主线程里面刷新界面。
1、参考这个:POSIX *** 作系统串口编程指南和 UNIX环境高级编程。
2、简单介绍一下:
《POSIX *** 作系统的串口编程指南》是在UNIX环境或PC上对串口进行编程的教程,每一章提供的例程都使用POSIX(Portable Standard for UNIX)终端控制函数,只需极少的修改就可运行在IRIX 、HP-UX、 SunOS、 Solaris、 Digital UNIX、 Linux等大多数类UNIX *** 作系统。
串口发送的数据是8位的,最大为255,就是FF,如果要发送大于255的数,必须变成几个字节发送,例如要发送十进制2315,就要将数据拆分 data(0)=2315/256; data(1)=2315%256; 这样就拆分开数据,再将数据发送出去。
@ toc
可在控制台输入
也可以用stty设置串口参数
使用后相当于串口回传,发什么回什么
发送数据
可以对串口发送数据比如对com1口
一般情况下串口的名称全部在dev下面,如果你没有外插串口卡的话默认是dev下的ttyS ,一般ttyS0对应com1,ttyS1对应com2,当然也不一定是必然的;
如果有ttyS设备,再看/dev/有没有ttyS,如没有就建立一个:
如果板子的设备中没有标准串口设备ttyS0,也没有ttySAC0。/dev下应该有一个USB串口:/dev/ttyUSB0
当一个串行卡或数据卡被侦测到时,它会被指定成为第一个可用的串行设备。通常是/dev/ttyS1(cua1)或/dev/ttyS2(cua2),这完成看原已内建的串口数目。ttyS设备会被报告在/var/run/stab内。
PC上的串口一般是ttyS,板子上Linux的串口一般叫做ttySAC
可能是linux下的串口设备没有打开,需要改变串口设备
的权限,或者根据文章头添加用户到组处理
可以通过以下命令 查看 板子上的硬件端口的内核设备名
该条命令会将 ttyUSB0所对应的硬件端口的kernel设备名 显现出来, 得到KERNEL== '1-554', 而不是之前的ttyUSB0
cmdsh如下:
/getUSBpy 调用当前路径下的getUSBpy这个Python语言,明确此次是哪个,ttyUSB0,或者ttyUSB1挂载在端口3-11上
getUSBpy:
完成之后 ,设置开机启动cmdsh(在/etc/rclocal中设置)则每次开机之后,会从/dev/ttydata获取到固定端口的数据
方式一
写入内容如下:
方式二
我的硬件序列号:ATTRS{serial}=="FTSYWCXZ"这个号是唯一的
可以通过/dev/usb_0打开串口设备
常用的匹配类型:
开发虚拟串口驱动程序
虚拟串口就是当本地并没有对应的串口硬件设备,而为应用层提供串口设备一样的系统调用接口,以兼容原本使用本地串口的应用软件的“虚”设备。本文作者给出了一种在Windows平台上实现虚拟串口的方法,由此实现的“串口”具有真实串口完全相同的系统调用接口。
在很多应用中需要用到虚拟串口,如在Modem卡出现之前,已经有了接在计算机串口上的外部Modem,而且各种拔号程序也是通过串口与外部Modem通信的。为了让已有的拔号程序不做修改,像使用外部Modem一样使用内置卡,就需要内置卡的驱动程序虚拟一个串口设备。又如当前工业界使用的一些串口服务器,往往有8个或16个甚至更多的串口,以连接多个串口设备,再通过一个网卡直接连入以太网。与它在同一网络上的计算机就通过以太网与串口服务器上挂接的串口设备通信。为了让计算机中原来使用本地串口的软件兼容,就需要在计算机上提供虚拟串口驱动。
虚拟串口的设计关键在于,该“串口”实现后必须具有与真实串口完全相同的系统调用接口。要做到这点,从已有的串口设备驱动程序上做修改是最佳捷径。下文就介绍以Windows NT上的串口驱动程序为基础,开发可运行于Windows NT、Windows 2000、Windows XP的各个版本虚拟串口驱动程序。
串口驱动中使用的几个链表
由于串口是双工设备,在一个读请求发出来还没有完成之前,同时可以发出写请求,加上在驱动程序层所有I/O请求都要求异步完成,即前一个请求尚没有完成,下一个相同的请求可能又来了。为此,串口驱动程序需要使用多个双向链表数据结构来处理各种IRP(I/O Request Packet,I/O请求包)。当收到一个IRP,先判断是否可立即完成,可以马上处理并返回,如果不允许则将IRP插在相应链表尾,在适当的时候如设备有空闲时处理,这时往往会产生一个硬件中断,激发DPC(Deferred Procedure Call,暂缓过程调用)过程,由DPC处理函数逐个从链表头取出IRP并试着完成它。串口驱动中有以下几个链表和DPC(在serialh中有定义):
ReadQueue 和 CompleteReadDpc
用于保存Read IRP的链表和用于调度的DPC,与DPC对应的处理函数是SerialCompleteRead,它在readc文件中,该函数的主要任务就是从ReadQueue中提取下一个IRP,并试着完成它。
WriteQueue 和 CompleteWriteDpc
用于保存Write IRP的链表和对应的DPC,与DPC对应的函数是SeriaCompleteWrite,它的实现在writec中,该函数负责从WriteQueue中提取IRP,并试着完成它。
MaskQueue 和 CommWaitDpc
这一对链表用于处理Windows串口驱动的一个特性:事件驱动机制。它允许应用程序预设一个事件标志,而后等待与标志对应事件发生。DPC所调用的函数是SerialCompleteWait,它实现在Waitmaskc文件中,该函数也是试着从MaskQueue中提取IRP并完成它。
PurgeQueue
该链表与前面几个稍有不同,它没有与之相对应的DPC机制,而是在每次收到Purge请求时从PurgeQueue中逐个提取IRP并试着完成,因某种原因不能完成时则插入链表。相应的函数是purgec文件中的SerialStartPurge。
以上机制是串口驱动程序的重要实现方法,在虚拟串口驱动中需要保留,但不同的是,硬件串口驱动中是ISR(中断服务程序)根据收、发或MODEM中断来激发相应的DPC,而在虚拟串口驱动中将因实际情况不同会有不同的激发机制。
DriverEntry的实现
DriverEntry是驱动程序的入口函数,相当于应用程序C语言中的main函数,开发一个虚拟串口驱动首先要修改的就是它。它的函数实体在initunloc文件中。只是在虚拟串口驱动中由于不与具体的硬件打交道,就不存在硬件资源分析、硬件初始化、判断其工作状态等处理,只需要为虚拟串建立设备对象、符号链接和初始化数据结构。一个典型函数实现大体如下:
NTSTATUS DriverEntry(IN PDRIVER_OBJECT DriverObject, IN PUNICODE_STRING RegistryPath)
{
/填写DriverObject->MajorFunction[]数组/
/建立设备对象/
/初始化SERIAL_DEVCIE_EXETENSION数据结构/
Status = IoCreateDevice(DriverObject, sizeof(SERIAL_DEVICE_EXTENSION), &uniNameString, FILE_DEVICE_SERIAL_PORT, 0,TRUE,&deviceObject);
//初始化所有链表
InitializeListHead(&extension->ReadQueue);
InitializeListHead(…);
…;
//初始化所有DPC
KeInitializeDpc(&extension->CompleteReadDpc,SerailCompleteRead,extension);
KeInitializeDpc(…);
/建立符号链接/
SerialSetupExternalNaming(extension);
return Status;
}
SerialRead和SerialCompleteRead的实现
函数SerailRead和SerialCompleteRead决定了对Read IRP的响应策略,它们都存于readc中。以串口服务器要用的虚拟串口为例,当串口服务器收到来自外部数据时将通过网络发至计算机,计算机则产生相应的网络中断并进行协议数据处理。网络接收线程缓存新收到的数据并激活CompleteReadDpc,从而SerialCompleteReadIrp得到调用,它再调用CompleteReadIrp对每个IRP进行处理。它们的实现大体如下:
NTSTATUS SerialRead(IN PDEVICE_OBJECT DeviceObject,IN PIRP Irp)
{
/此处略去变量声明和初始化/
/提取IRP中相关的数据/
stack = IoGetCurrentIrpStackLocation(Irp);
ReadLen = stack->ParametersReadLength;
/先看本地缓冲有数据否?有的话先读取/
if(Extension->InCounter > 0 )
{ //注意这里要加锁,以防数据访问冲突
KeAcquireSpinLock(&Extension->
ReadBufferLock,&lIrql);
FirstRead = (ReadLen>Extension->
InCounter) Extension->InCounter: ReadLen;
RtlCopyMemory(Irp->AssociatedIrp
SystemBuffer,Extension->pInBuffer,FirstRead);
Extension->InCounter -= FirstRead;
ReadLen -= FirstRead;
KeReleaseSpinLock(&Extension->
ReadBufferLock,lIrql);//释放锁
}
/是否已读到足够数据?是的话则完成该IRP/
if( 0 == ReadLen)
{
status=STATUS_SUCCESS;
Irp->IoStatusStatus = status;
Irp->IoStatusInformation = FirstRead;
IoCompleteRequest(Irp,0);
return status;
}
/没有则将IRP插入队列中,通过网络向串口服务器发出读数据请求/
IoMarkIrpPending(Irp);
InsertWaitList(Extension->ReadQueue,Irp);
status = TdiSendAsync(Extension->ComChannel,pAckPacket,PacketLen(pAckPacket),(PVOID)ReadAckComplete,Irp);
/返回PENDING,表示该IRP尚没有完成/
return STATUS_PENDING;
}
Void CompleteReadIrp(IN PSERIAL_DEVICE_EXTENSION extension,IN PIRP Irp,IN PUCHAR pInData,IN ULONG Length )
{
/此处略去变量声明和初始化/
/读取新数据/
ReadLen = (ReadLen > Length) Length : ReadLen;
if(ReadLen != 0)
{
RtlCopyMemory(pReadAsync->
pReadBuffer,pInData,ReadLen);
pReadAsync->pReadBuffer += ReadLen;
pReadAsync->ReadAlready += ReadLen;
extension->PerfStatsReceivedCount +=
ReadLen;
}
else
{
/因为串口服务器端只有在已经有了相应的数据或超过时间(此时,Length=0)才会发来应答并激活本DPC过程,所以此时已经超时,为了便于结束本IRP,这里有意改变TotalNeedRead,造成接收完毕的假象/
pReadAsync->TotalNeedRead =
pReadAsync->ReadAlready;
}
if(pReadAsync->TotalNeedRead == pReadAsync->ReadAlready)
{
/该IRP是否已经接收完毕,是的话则结束该
IRP/
EndReadIrp(Irp);
/从ReadQueue中取下一个IRP/
}
/本IRP没有完成也没有超时,则继续等待本DPC下次被激活,注意此时要判断IRP是否被要求取消/
}
SerialWrite和SerailCompleteWrite的实现
SerialWrite和SerailCompleteWrite决定了Write IRP的实现。在SerialWrite中调用了网络发送函数TdiSendAsync,当该发送完成后将激活CompleteWriteDpc,调度SerialCompleteWrite函数,而它主要就是取出当前的WriteIRP,设置已经发送的数据数量,调用CompleteWriteIrp做该IRP的进一步处理。它们大体如下:
NTSTATUS SerialWrite(IN PDEVICE_OBJECT DeviceObject,IN PIRP Irp)
{
/此处略去变量声明和初始化/
/从IRP中提取有关数据/
stack=IoGetCurrentIrpStackLocation(Irp);
SendLen = stack->ParametersWriteLength;
/为网络发送和异步 *** 作分配缓冲,在CompleteWrite中全部数据发送完后释放/
pWriteAsync = ExAllocatePool(NonPagedPool,
SendLen+PACKET_HEADER_LEN+sizeof(WRITE_ASYNC));
if(pWriteAsync == NULL)
{
//错误处理
}
//保存异步数据
…
//设置网络发送数据包
BuildDataPacket(pPacket,WRITE,(USHORT)SendLen,pWriteAsync->pWriteBuffer);
/先将IRP暂时阻塞并插入队列,在CompleteWrite中完成/
IoMarkIrpPending(Irp);
InsertWaitList(extension->WriteQueue, Irp);
/将写请求和相关数据通过网络发向串口服务器,由它负责将数据传到具体串口设备/
status = TdiSendAsync(Extension->ComChannel,pPacket,PacketLen(pPacket),(PVOID)CompleteWriteIrp,Irp);
//统计数据累加
Extension->PerfStatsTransmittedCount += SendLen;
return STATUS_PENDING;
}
NTSTATUS CompleteWriteIrp(IN PDEVICE_OBJECT deviceobject,IN PIRP pIrp,IN PVOID context)
{
/此处略去变量声明和初始化/
SendLen=pWriteAsync->TotalNeedWrite - pWriteAsync->WroteAlready;
if(SendLen == 0)//全部数据发送完毕
{
EndWaitWriteIrp(pWriteIrp,STATUS_SUCCESS,
pWriteAsync->WroteAlready,pWriteAsync);
//从WriteQueue中取下一个IRP;
}
else //发送剩余数据
{
if(pWriteIrp->Cancel)
{
//IRP被要求取消,完成WriteIrp
EndWaitWriteIrp(pWriteIrp,STATUS_CANCELLED,
pWriteAsync->WroteAlready,pWriteAsync);
return STATUS_CANCELED;
}
else
{
//再次设置网络数据包并发送
BuildDataPacket(…);
status = TdiSendAsync(…);
//统计数据累加
Extension->PerfStatsTransmittedCount +=
SendLen;
return STATUS_MORE_PROCESSING_REQUIRED;
}
}
}
其他几个接口函数的实现
除Read/Write外,SerialUnload、SerialCreateOpen、 SerialClose、SerialCleanup、SerailFlush等调用接口是硬件相关性比较弱的接口函数,基本不要修改,直接删除原来 *** 作硬件的部分即可。复杂一点就是SerialIoControl,该接口函数包含有大量设置、读取串口硬件状态的处理,可建立一个本地数据结构随时保存虚拟串口的当前硬件状态。同时为了保证串口服务器端的真实串口状态和上层软件要求的一致,需要将所有设置请求通过网络发送到服务器端,由它负责改变真实硬件的状态。
以上就是关于求教linux中串口发送at命令的问题全部的内容,包括:求教linux中串口发送at命令的问题、如何在LINUX下编写一个C语言的串口程序、如何在linux下调试串口,发送十六进制数据等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)