FFT子函数的参数中有struct compx xin,
但是后面
{t=xin[j];xin[j]=xin;xin=t;} /i<j则换位/
你又把它当做数组/指针来使用。这样是不行的。
通常做4个点的FFT,就意味着你在市域上取了4个点的样本来做。FFT是DFT的快速实现方式,本质是完全一样的。你的问题应该是在问,如何用两个4点的FFT结构合起来实现8个点的DFT吧,那么这个就牵涉到你的蝴蝶是怎样画的了,应该不难画出来,请楼主自己试试。
计算离散傅里叶变换的快速方法,有按时间抽取的FFT算法和按频率抽取的FFT算法。前者是将时域信号序列按偶奇分排,后者是将频域信号序列按偶奇分排。它们都借助于的两个特点:一是周期性;二是对称性,这里符号代表其共轭。这样,便可以把离散傅里叶变换的计算分成若干步进行,计算效率大为提高。
时间抽取算法令信号序列的长度为N=2,其中M是正整数,可以将时域信号序列x(n)分解成两部分,一是偶数部分x(2n),另一是奇数部分x(2n+1),于是信号序列x(n)的离散傅里叶变换可以用两个N/2抽样点的离散傅里叶变换来表示和计算。考虑到和离散傅里叶变换的周期性,式⑴可以写成
⑶其中(4a)(4b)由此可见,式⑷是两个只含有N/2个点的离散傅里叶变换,G(k)仅包括原信号序列中的偶数点序列,H(k)则仅包括它的奇数点序列。虽然k=0,1,2,…,N-1,但是G(k)和H(k)的周期都是N/2,它们的数值以N/2周期重复。
因为于是由式⑶和式⑷得到(5a)(5b)
因此,一个抽样点数为N 的信号序列x(n)的离散傅里叶变换,可以由两个 N/2抽样点序列的离散傅里叶变换求出。依此类推,这种按时间抽取算法是将输入信号序列分成越来越小的子序列进行离散傅里叶变换计算,最后合成为N点的离散傅里叶变换。
通常用图1中蝶形算法的信号流图来表示式⑸的离散傅里叶变换运算。例如,N=8=2的抽样点的信号序列x(n)的离散傅里叶变换,可用如图2所示的FET算法的信号流图来计算。
① N=2点的离散傅里叶变换的计算全由蝶形运算组成,需要M级运算,每级包括N/2个蝶形运算,总共有 个蝶形运算。所以,总的计算量为次复数乘法运算和N log2N次复数加法运算。
② FFT算法按级迭代进行,计算公式可以写成
⑹N抽样点的输入信号具有N个原始数据x0(n),经第一级运算后,得出新的N个数据x1(n),再经过第二级迭代运算,又得到另外N个数据x2(n),依此类推,直至最后的结果x(k)=xM(k)=X(k)在逐级迭代计算中,每个蝶形运算的输出数据存放在原来存贮输入数据的单元中,实行所谓“即位计算”,这样可以节省大量存放中间数据的寄存器。
③ 蝶形运算中加权系数随迭代级数成倍增加。由图2可以看出系数的变化规律。对于N=8,M=3情况,需进行三级迭代运算。在第一级迭代中,只用到一种加权系数;蝶形运算的跨度间隔等于1。在第二级迭代中,用到两种加权系数即、;蝶形运算的跨度间隔等于2。在第三级迭代中,用到4种不同的加权系数即、、、;蝶形运算的跨度间隔等于4。可见,每级迭代的不同加权系数的数目比前一级迭代增加一倍;跨度间隔也增大一倍。
④ 输入数据序列x(n)需重新排列为x(0)、x⑷、x⑵、x⑹、x⑴、x⑸、x⑶、x⑺,这是按照二进制数的码位倒置所得到的反序数,例如N=8中数“1”的二进制数为“001”,将其码位倒转变为“100”,即为十进制数“4”。
频率抽取算法 按频率抽取的 FFT算法是将频域信号序列X(k)分解为奇偶两部分,但算法仍是由时域信号序列开始逐级运算,同样是把N点分成N/2点计算FFT,可以把直接计算离散傅里叶变换所需的N次乘法缩减到次。
在N=2的情况下,把N点输入序列x(n)分成前后两半
⑺
时间序列x1(n)±x2(n)的长度为N/2,于是N点的离散傅里叶变换可以写成
(8a)
(8b)
频率信号序列X(2l)是时间信号序列x1(n)+x2(n)的N/2点离散傅里叶变换,频率信号序列X(2l+1)是时间信号序列x1(n)-x2(n)的N/2点离散傅里叶变换,因此,N点离散傅里叶变换的计算,通过两次加(减)法和一次乘法,从原来序列获得两个子序列,所以,频率抽取算法也具有蝶形运算形式。以2为基数的FFT基本蝶形运算公式为
⑼
其计算量完全和时间抽取算法一样,即只需次乘法运算和Nlog2N次加(减)法运算。图3 表示N=8=2点的离散傅里叶变换的信号流图。由图可见,它以三级迭代进行即位计算,输入数据是按自然次序存放,使用的系数也是按自然次序,而最后结果则以二进制反序存放。
实际上,频率抽取算法与时间抽取算法的信号流图之间存在着转置关系,如将流图适当变形,可以得出多种几何形状。
除了基2的FFT算法之外,还有基4、基8等高基数的FFT算法以及任意数为基数的FFT算法。
二维FFT相当于对行和列分别进行一维FFT运算。
先对各行逐一进行一维FFT,然后再对变换后的新矩阵的各列逐一进行一维FFT。相应的伪代码如下所示:for (int i=0; i<M; i++)FFT_1D(ROW[i],N);for (int j=0; j<N; j++)FFT_1D(COL[j],M);其中,ROW[i]表示矩阵的第i行。
例:
#include <stdioh>
#include <mathh>
#include <stdlibh>
#define N 1000
/定义复数类型/
typedef struct{
double real;
double img;
}complex;
complex x[N], W; /输入序列,变换核/
int size_x=0;/输入序列的大小,在本程序中仅限2的次幂/
double PI;/圆周率/
void fft();/快速傅里叶变换/
void initW(); /初始化变换核/
void change(); /变址/
void add(complex ,complex ,complex ); /复数加法/
void mul(complex ,complex ,complex ); /复数乘法/
void sub(complex ,complex ,complex ); /复数减法/
void output();
int main(){
int i;/输出结果/
system("cls");
PI=atan(1)4;
printf("Please input the size of x:\n");
scanf("%d",&size_x);
printf("Please input the data in x[N]:\n");
for(i=0;i<size_x;i++)
scanf("%lf%lf",&x[i]real,&x[i]img);
initW();
fft();
output();
return 0;
}
/快速傅里叶变换/
void fft(){
int i=0,j=0,k=0,l=0;
complex up,down,product;
change();
for(i=0;i< log(size_x)/log(2) ;i++){ /一级蝶形运算/
l=1<<i;
扩展资料:
FFT算法很多,根据实现运算过程是否有指数因子WN可分为有、无指数因子的两类算法。
经典库利-图基算法 当输入序列的长度N不是素数(素数只能被1而它本身整除)而是可以高度分解的复合数,即N=N1N2N3…Nr时,若N1=N2=…=Nr=2,N=2则N点DFT的计算可分解为N=2×N/2,即两个N/2点DFT计算的组合,而N/2点DFT的计算又可分解为N/2=2×N/4,即两个N/4点DFT计算的组合。
依此类推,使DFT的计算形成有规则的模式,故称之为以2为基底的FFT算法。同理,当N=4时,则称之为以4为基底的FFT算法。当N=N1·N2时,称为以N1和N2为基底的混合基算法。
参考资料来源:百度百科-快速傅里叶变换
以上就是关于keil编译fft程序出错:FFT1.C(27): error C216: subscript on non-array or too many dimensions全部的内容,包括:keil编译fft程序出错:FFT1.C(27): error C216: subscript on non-array or too many dimensions、怎样用fft蝶形图计算序列的DFT,x=计算X、快速傅里叶变换的计算方法等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)