求西门子840d系统铣椭圆的宏程序,,,谢谢

求西门子840d系统铣椭圆的宏程序,,,谢谢,第1张

DEF INT AA

G54 G90 G0 X90 Y40

S600 M3

Z5

G1 Z-2 F200

G41 D1 G1 X50

Y0

FOR AA=1 TO 360

G1 X=50COS(AA) Y=-30SIN(AA)

ENDFOR

Y-40

G40 X90

G0 Z100 M5

M30

现行的数控程序的编制中,主要有两种编程方式:手工编程和自动编程。虽然自动编程运用得越来越广泛,但手工编程在某些领域也是不可或缺的一种编程手段。手工编程至少在此以下几方面有着自己的优势:其一,熟练的程序员编制的手工程序加工效率高于自动编程;其二,熟悉手工编程,对自动程序的修改是不无裨益的;其三,自动编程的所敲定的走刀路线限制了其加工工艺,通过手工编程能够得到弥补。

在手工编程过程中,用户宏程序的编制,能极大提高程序编制的效率,因此,我们在数控教学及训练过程中,必须把用户宏程序的编制作为我们数控教学的重要内容之一。从历年全国数控大赛的试题中也不难发现,用户宏程序的编制是运用得极其频繁的。但是,我们很难在目前的教材中找到完整的宏程序的编写的方法及思路。为此,笔者提出了一整套设计用户宏程序的方法,通过利用流程图来设计用户宏程序,提高了编程的效率。

二、用户宏程序简介

用户宏程序有A、B两种,A类宏程序用G65指令编写,其格式如下:

G65 Hm P#i Q#j R#k

其中,m—01~99表示运算命令或转移命令功能;

#i—存入运算结果的变量名;

#j—进行运算的变量名1,可以是常数,常数直接表示,不带#;

#k—进行运算的变量名2,也可以是常数。

意义, #i=#j○#k,表示运算符号,常用意义如表1

表1

G代码

H代码

功能

定义

G65

H01

赋值

#i=#j

G65

H02

加法

#i=#j+#k

G65

H03

减法

#i=#j-#k

G65

H04

乘法

#i=#j×#k

G65

H05

除法

#i=#j÷#k

G65

H80

无条件转移

转向N

G65

H81

条件转移1

IF #j=#k,GOTO N

G65

H82

条件转移2

IF #j≠#k,GOTO N

G65

H83

条件转移3

IF #j>#k,GOTO N

G65

H84

条件转移4

IF #j<#k,GOTO N

G65

H85

条件转移5

IF #j≥#k,GOTO N

G65

H86

条件转移6

IF #j≤#k,GOTO N

G65

H99

产生P/S报警

产生500+1号P/S报警

除此以外,G65指令还可以实现逻辑运算、开平方、取绝对值、三角运算及复合运算等,相关指令见有关书籍,这里不一一介绍。需要指出的是,不同的数控系统,其功能的多少也不一样,用户可参考有关系统的说明书。

B类宏程序由控制语句,调用语句所组成。宏程序可以与主程序做在一起,也可以单独做成一个子程序,然后用G65指令调用。调用方法如下:

G65 P(程序号)〈引数赋值〉或G65 P(程序号) L(循环次数)〈引数赋值〉

所谓引数赋值,是指用A、B、C、D等地址给变量#1、#2、#3、#4等赋值。

B类宏程序的控制指令有三类,与C语言等高级程序设计语言的控制指令很类似。一类是IF语句,格式为:

IF[条件式]GOTO n (n即顺序号)

条件式成立时,从顺序号为n的程序段往下执行,条件式不成立时,执行下一下程序段;第二类是WHILE语句,格式为:

WHILE[条件式] DO m

END m

条件式成立时,从DO m的程序段到END m的程序段重复执行,条件式不成立时,则从END m的下一程序段执行。

第三类是无条件转移指令,格式为:GOTO n。

三、运用流程图编写用户宏程序的一般步骤

运用流程图编写用户宏程序的一般步骤为:一分析零件结构,确定宏程序加工的内容,找出加工工艺路线的律;二将零件加工路线规律用流程图表达出来,并进一步分清楚哪些是程序编制过程中的变量,哪些是常量,从而将一般的流程变成程序流程图;三根据程序流程图,编写零件的加工程序。

四、应用举例

(一)宏程序应用实例一

如图1所示,在一根轴上加工N个槽,每个槽的宽度为a1,槽的间距为a2,槽底直径为b1,棒料直径b2,并且设所给材料足够长,试编写程序加工该零件,现有一零件参数为N=100个槽,槽底直径b1=30mm,槽宽a1=5mm,工件直径b2=40mm,间隔a2=2mm,刀宽=3mm,现编写程序加工。图11零件工艺过程分析

该零件是一个比较简单的例子,在压面机械上用得较多。零件的精度要求不高,为了使程序有更广泛的适应性,将宏程序做成一个子程序,用主程序来调用实现零件的加工。加工时将坐标原点选择在如图所示的位置,X轴离第一个槽的距离为一个间距a2的距离。

零件的加工过程如下将:将刀具移至加工起点→进刀→切削第一个槽→计算下一槽的位置并将刀具移到此位置→加工下一个槽……如此至最后一个槽加工完为止。

将此过程画成流程图,如图2(a)所示。

(a) (b)

图2

2零件加工过程中所使用的变量

通过分析,要加工该零件,需要如下一些变量:

工件直径#200= b2

槽底直径#201= b1

槽宽#202= a1

槽间间隔#203= a2

切槽刀宽度#204

每加工一个槽后,切槽刀在Z轴方向移动的距离#205(等于槽间距加上槽宽)

槽的起点坐标Xs=#206,Zs=#207

槽加工终点的坐标Xf=#208,Yf=#209

计算槽数目的变量#215

加工槽的总数#216

由此画出编制程序所用的流程图,如图2(b)所示。

3根据程序流程图编制程序

宏程序O9061

N10 G65 H83 P160 Q#204 R#202 如果刀宽大于槽完,则结束

N20 G65 H01 P#215 Q0 计数器变量清零

N30 G65 H02 P#205 Q#202 R#203 计算#205

N40 G65 H02 P#206 Q#200 R5 工件直径加上5mm作为X方向起点

N50 G65 H02 P#207 Q#203 R#204 槽的间距加上一个刀宽

N60 G65 H01 P#207 Q#207 取负值后作为第一个槽的Z向起点

N70 G65 H01 P#208 Q#201 槽底直径作为槽终点的X坐标

N80 G65 H01 P#209 Q#205 第一个槽终点Z向坐标

N90 G00 X#206 Z#207 M08 定位到槽加工的位置

N100 G75 R1

N110 G75 X#208 Z#209 P2 Q#204 F20 加工槽

N120 G65 H03 P#207 Q#207 R#205 下一个槽起点Z向坐标计算

N130 G65 H03 P#209 Q#209 R#205 下一个槽终点Z向坐标计算

N140 G65 H02 P#215 Q#215 R1 槽计数器加1

N150 G65 H84 P90 Q#215 R#216 判断槽是否加工完毕

N160 M08

N170 M99 结束

主程序 O0001

N10 G65 H01 P#200 Q40 工件直径赋值

N20 G65 H01 P#201 Q30 槽底直径赋值

N30 G65 H01 P#202 Q5 槽宽赋值

N40 G65 H01 P#203 Q2 槽间间隔赋值

N50 G65 H01 P#204 Q3 切槽刀宽赋值

N60 G65 H01 P#216 Q100 槽数赋值

N70 G00 X100 Z100 起刀点位置

N80 M98 P9061 调用宏程序

N90 M30 程序结束

(二)宏程序应用实例二

对于一些大悬伸(加工深度与刀具直径之比较大)的零件,用普通加工方法总难达到理想效果,此时用插铣法容易保证零件精度,如图3所示的零件,尺寸80很难保证,用插铣法后获得了比较好的效果。曾经有工厂做过类似的程序,但程序只是针对零件本身,适应性不强,当零件的尺寸发生变化后,程序还得发生较大修改。笔者针对这种情况,将程序分为主程序和子程序,当零件的尺寸发生变化后,只需要修改主程序即可,非常方便。

1加工工艺分析

传统加工工艺方法采用多次重复加工。很难消除让刀,并且造成加工应力,最后由于应力释放造成零件的内腔变小。为了解决这个问题,我们将加工分为粗加工和精加工,粗加工采用普通的工艺方法,精加工采用插铣。

建立如图3所示的坐标系,为了保证加工质量,防止划伤已加工过的表面,编程时避免使用钻孔循环指令。加工轨迹如图4所示,在YZ平面内进行以下加工步骤:加工第一刀→沿圆弧退刀→返回Z=3处→沿圆弧进刀→沿X方向移动一个步距→加工第二刀→…。

加工过程中,粗加工尺寸80按796加工,而精加工采用宏程序编制高速插铣程序。精加工的具体参数如表2所示

图3零件图及坐标系 图4刀具路径表2精加工参数

加工方式

加工材料

刀具

步距

设置安全高度

顺铣

铝合金

Φ18整体硬质合金加长球头刀

0.05

Z=3

2加工流程图

为增强程序的适应性,本程序刀分为子程序和主程序来编写,子程序起始位置为(0,0,50),刀具在加工过程中的基本路线是按前面所给出的路线来走刀。

由此画出加工流程图如图5(a)所示。(a) (b)

图5

3程序所使用的变量及程序流程图

本程序中所使用的变量如下:

需加工部位X方向的长度:#1;

需加工部位Y方向的长度:#2;

需加工部位Z方向的深度:#3;

X方向的步距:#4;

走刀轨迹中,退(或进)刀时的半径:#5(本例图4中的R10);

中间变量:#6、#7、#8、#9

由所确定的变量及加工流程图,画出程序流程图如图5(b)所示。

4编制程序

子程序:%9001

N10 #1=#1/2 #1变量取1/2作为X坐标

N20 #2=#2/2 #2变量取1/2作为Y坐标

N30 G00 X#1 X方向定位到加工位置

N40 G41 D1 Y#2 Y方向定位到加工位置

N50 G01 Z3 F3000 M08 下降下安全高度,开冷却液

N60 #6=-(#3-#5) 计算加工终点Z向坐标

N70 #7=#2-2#5 计算退刀终点Y坐标

N80 G01 Z#6 插铣加工

N90 G02 Y#7 R#5 退刀

N100 G01 Z3 返回

N110 G02 Y#2 R#5 进刀

N120 #8=#8+#4 X方向总加工长度计数

N130 G91 G01 X-#4 X方向走一个步距

N140 IF #8LE#1 GOTO 80 判别第一侧是否加工完

N150 G90 Y-#2 移至另一侧

N160 G01 Z#6 插铣加工另一侧

N180 G02 Y-#7 R#5 退刀

N190 G01 Z3 返回安全高度

N200 G02 Y-#2 R#5 进刀

N210 #9=#9+#4 X方向总加工长度计数

N220 G91 G01 X#4 X方向移动一个步距

N230 IF #9LE#1 GOTO 160 判别另一侧是否加工完

N240 G90 G40 G00 X0 Y0 M09 X、Y方向返回起始点

N250 Z50 Z方向返回起始点

N260 M99 宏程序结束

主程序:%1010

N10 T01 选一号刀

N20 M06 换刀

N30 G00 G90 G54 G19 X0 Y0 S5000 M03 定位到起始位置,选择坐标平面及坐标系,启动主轴。

N40 G43 H01 Z50 Z方向补偿

N60 G65 P9001 A200 B8005 C90 D0 E0 F0 I005 J10 K0 调用宏程序并给相关变量赋值

N70 M05 停止主轴

N80 G49 Z50 Z方向取消补偿

N90 M30 程序结束

五、结束语

利用流程图编制用户宏程序,思路清晰,所编制的程序适应性好,是一种值得推广的方法。

带入公式不就可以了:

设原点在中心

#1=0

G0G42X50Y0D1

G64(小线段连续加工)

WHILE[#1LE2PI]

#2=COS[#1]50

#3=SIN[#1]25

G1X[#2]Y[#3]F1000

#1=#1+PI/200(精度由这里控制)

ENDW

G0Z30

G40Y100

M30

我用的是华中系统

现成的 用12的球头刀

圆柱上面 有个半球

编写:

主程序

O123

90G80G49G40

G0G90G54X40Y0S1600M3

G43H1Z100M8

Z10

G1Z0F300

M98P110L15

G90G1Z20F500

G1X40Y0

M98P210

G91G28Z0

M5

G91G28Y0

M30

子程序 一 先加工 圆柱 30个深度

O110

G91Z-2F500

G90G41G1X28D1

G2X28I-28

G01X40Y0

M99

子程序二 加工半球

O210

#24=28

#26=-20

#1=20

#2=0

#18=20

N29G1Z#26

X#24

G2X#24Y0I-#24

#2=#2+01

#1=SQRT[#18#18-#2#2]

#24=#1+8

#26=-20+#2

IF[#26LE0]GOTO29

G1Z20

G01X0Y40

M99

一、非圆曲面类的宏程序的编程技巧

1、非圆曲面可以分为两类;

(1)、方程曲面,是可以用方程描述其零件轮廓的曲面的。如抛物线、椭圆、双曲线、渐开线、摆线等。

这种曲线可以用先求节点,再用线段或圆弧逼近的方式。以足够的轮廓精度加工出零件。选取的节点数目越多,轮廓的精度越高。然而节点的增多,用普通手工编程则计算量就会增加的非常大,数控程序也非常大,程序复杂也容易出错。不易调试。即使用计算机辅助编程,其数据传输量也非常大。而且调整尺寸补偿也很不方便。这时就显出宏程序的优势了,常常只须二、三十句就可以编好程序。而且理论上还可以根据机床系统的运算速度无限地缩小节点的间距,提高逼近精度。

(2)、列表曲面,其轮廓外形由实验方法得来。如飞机机翼、汽车的外形由风洞实验得来。是用一系列空间离散点表示曲线或曲面。这些离散点没有严格一定的连接规律。而在加工中则要求曲线能平滑的通过各坐标点,并规定了加工精度。加工列表曲线的方法很多,可以采用计算机辅助编程,利用离散点形成曲面模型,再生成加工轨迹和加工程序。对于一些老机床或无法传送数据的机床,我们也可以将轮廓曲线按曲率变化分成几段,每段分别求出插值方程。采用宏程序加密逼近曲线的方法。

2、非圆曲面类的宏程序的编程的要点有:

建立数学模型和循环体

(1)、数学模型是产生刀具轨迹节点的一组运算赋值语句。它可以计算出曲面上每一点的坐标。它主要从描述其零件轮廓的曲面的方程转化而来。

(2)、循环体是由一组或几组循环指令和对应的加法器组成。它的作用是将一组节点顺序连接成刀具轨迹,再依次加工成曲面。

以上就是关于求西门子840d系统铣椭圆的宏程序,,,谢谢全部的内容,包括:求西门子840d系统铣椭圆的宏程序,,,谢谢、数控宏程序、数控加工中心加工一椭圆,等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/9833891.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-02
下一篇 2023-05-02

发表评论

登录后才能评论

评论列表(0条)

保存