1、首先,开启软件无线电接收无人机电源按钮。
2、将DJIconfigs文件下载到自己的电脑上并解压,得到无人机系统文件。
3、最后,其次选择DJIconfigs文件并点击打开按钮,点击完成,即可根据需求调节电接收无人机信号。
tt=(0:1/fs:ts);
t=[tt;tt+ts;tt+2ts;tt+3ts;tt+4ts;tt+5ts;tt+6ts;tt+7ts;tt+8ts;tt+9ts;];
y=zeros(10,length(tt));
i=1;
%开始调制
while i<=10
y(i,:)=x(i)cos(2pif1t(i,:))+~x(i)cos(2pif0t(i,:));
i=i+1;
end
t=reshape(t',length(tt)10,1);%阵列重新排列
y=reshape(y',length(tt)10,1);
figure(2);
plot(t,y);
title('FSK信号时域波形');xlabel('时间');ylabel('幅度');
MODEM(调制解调器)是Modulator-De-modulator的缩写,其意是调制器一解调器合称调制解调器。它既调制又解调,是使计算机信息能在电话网上传输而使用的信号变换器。
调制是把所有的数字信号变换为模拟信号。计算机发送的为数字信号,所要求传输线路的频带很宽,但在长距离通信时,通常是采用频带为30-3000HZ的电话线传送。如果直接发送二进制数字信号,经过电话线传送,势必造成信号失真而导致发送的正确信号收不到。因此,应采用变换技术,将数字信号变换成小于4KHZ的模拟信号在电话线上进行传送。
解调是将模拟信号变换成数字信号。通过解调电脑才能接收并及时处理这些信息。
由此可见,为使每台计算机既能发送,又能接收,必须由调制解调器完成此重任。
目前,因特网正在全球逐步普及,我国亦正在掀起因特网的热潮。每个家庭里的计算机只要在机子上插上一块调制解调器(MODEM)卡,接在电话线的接口上,便可通过电话网进入因特网的迷人世界进行“网上冲浪”,这是入网最简单、最经济也是最容易的好方法。
FSK(Frequeney-Shift Keying,频移键控)是用不同频率的载波来传送数字信号。FSK信号具有抗干扰能力强、传输距离远等优点,在只常生活和工业控制中被广泛采用。例如CID(Calling Identity Delivery)来电显示,低速的Modem,铁路系统和电力系统的载波通信中也广泛使用他来传送各种控制信息。以往的FSK调制解调器采用“集成电路+连线”方式设计,集成块多、连线复杂且体积较大。本文基于FPGA芯片,采用VHDL语言,利用层次化、模块化设计方法,提出了一种FSK调制解调器的实现方法。
1 系统整体结构框图
本文设计的FSK调制解调器采用了ALTERA公司的EP1C3T144C8芯片,系统主时钟频率为20 MHz(芯片外部有源晶振),“0”,“1”数字信号由伪随机信号(m序列)发生器产生。为完成FSK调制器和解调器的发送与接收,由FPGA芯片完成的系统整体逻辑功能框图如图1所示。
2 系统的具体设计与实现
21 伪随机序列的产生
最大长度线性移位寄存器序列(m序列)是数字通信中非常重要的、应用十分广泛的一种伪随机序列。由于他具有随机性、规律性及较好的自相关性和互相关性,而且要求设备简单,易于实现,成本低的特点,本系统采用m序列作为数字基带信号进行程序调试。
m序列是由带线性反馈的移位寄存器产生的周期最长的一种二进制序列。线性反馈移位寄存器的一般结构如图2所示。他是由n级移位寄存器,若干模二加法器组成线性反馈逻辑网络和时钟脉冲产生器连接而成。
由于带有反馈,因此在移位脉冲作用下,移位寄存器各级的状态将不断变化,通常将移位寄存器的最后一级作为输出,由此所产生的输出序列为:{ak}=a0a1…ak-1。
输出序列是一个周期序列,其特性由移位寄存器的级数、初始状态、反馈逻辑及时钟频率(决定着输出码元的宽度)所决定。
当移位奇存器的级数及时钟一定时,输出序列就由移位寄存器的初始状态及反馈逻辑完全确定;当初始状态为全零状态时,移位寄存器输出全0列。因此初始状态不能为全零状态。
本系统选用m序列的级数为n=7,序列长度为m=27-1=127,若选用的反馈系数的八进制数值为235,转换成二进制数值为10011101,即c0=c2=c3=c4=c7=1,c1=c5=c6=0。仿真波形如图3所示。
22 FSK调制
本系统是利用2个独立的分频器来改变输出载波频率,以数字键控法来实现FSK捌制。
数字键控法也称为频率选择法,他有2个独立的振荡器,数字基带信号控制转换开关,选择不同频率的高频振荡信号实现FSK调制。键控法产生的FSK信号频率稳定度可以做到很高并且没有过渡频率,他的转换速度快,波形好,频率键控法在转换开天发生转换的瞬刚,2个高频振荡的输出电压通常不相等,于是已调信号在基带信息变换时电压会发生跳变,这种现象称为相位不连续,这是频率键控特有的情况。
本文设计的FSK调制系统方框图如图4所示。
23 FSK解调
过零检测法与其他解调方法相比较,最明显的特点就是结构简单,易于实现,对增益起伏不敏感,特别适用于数字化实现。他是一种经济、实用的最佳数字解调方法。其方框图如图5所示。他利用信号波形在单位时间内与零电平轴交义的次数来测定信号频率。输入的已调信号经限幅放大后成为矩形脉冲波,再经微分电路得到l圾向尖脉冲,然后整流得到单向尖脉冲,每个尖脉冲表示信号的一个过零点,尖脉冲的重复频率就是信号频率的2倍。将尖脉冲去触发一单稳态电路,产生一定宽度的矩形脉冲序列,该序列的平均分量与脉冲重复频率成正比,即与输入频率信号成正比。所以经过低通滤波器输出平均量的变化反映了输入信号的变化,这样就完成了频率-幅度变换,把码元“1”与“0”在幅度上区分开来,恢复出数字基带信号。
本文设计的FSK解调方框图如图6所示。
3 系统仿真与实验结果分析
整个设计使用VHDL编写,以EP1C3T144CS为下载的目标芯片,在Quartus II软件平台上进行布局布线后进行波形仿真,可得到如图7所示的波形图。其中:clk为输入主时钟信号;en为置位信号;clks为clk经过200分频器的输出信号;ps7为时钟源经过n=7的伪随机发生器产生的伪随机(m序列)信号;fsk为ps7经过FSK调制器后的已调信号;q为fsk经过FSK解调器后的解调信号。
在实际硬件电路上进行测试,用示波器观察各个模块的工作过程,得到如图8和图9所示的波形图。
其中,圈8中Ch1为已调信号,Ch2为数字基带信号。图9中Ch1为数字基带信号,Ch2为解调信号。
由上面的软件和硬件的测试结果可知:
(1)本系统的FSK调制解调器功能已经实观,结果正确无误,经验证满足预期的设计指标要求,且其整个工作过程可通过软件波形仿真,或是实际硬件电路通过示波器来直观、清晰观察。
(2)传统的调制解调方式可以采用软件与硬件结合的方式来实现,符合未来通信技术发展的方向。
4 结 语
传统的FSK调制解调方式都是采用硬件电路实现,电路复杂、调试不便。文中采用硬件描述语占设计的基于FPGA调制解调器,设计灵活、修改方便,有效地缩小了系统的体积,增加了可靠性,同时系统采用VHDL语言进行设计,具有良好的可移植性及产品升级的系统性。
有好多种方法:1)鉴相器法:用一个振荡器(例如:同步振荡器,或者锁相环)产生一个与接收到的调频信号的中心频率相同的本地振荡频率,以此频率作为基准,来检查接收到的信号的相位与此本振相位之差,将这个相位差变成电信号,于是就解调出来了。(灵敏度高,抗干扰能力强,适合窄带信号,但是成本比较高)2)鉴频器法:用一个LC谐振回路组成一个带通滤波器,当带通滤波器的中心频率与调频信号的中心频率重合的时候,则,信号几乎全部通过,所以输出幅度最大。反之,当带通滤波器的中心频率远离调频信号的中心频率的时候,信号几乎全部被带通滤波器阻止通过,所以,输出幅度很小。当带通滤波器的中心频率靠近调频信号的频率时,把这个带通滤波器的谐振频率固定下来。这时,调频信号的频率在不断的变化,当变化到靠近到带通滤波器中心频率时,幅度就上升。反之,当远离带通滤波器中心频率时,幅度就减小,结果,就把调频信号变成了调幅信号,再经过检波,就解调出来了。(灵敏度一般,抗干扰能力差,因此,在鉴频之前必须限幅,但成本比较低)3)定宽脉冲平均法:这种方法比较好理解,即把调频信号的每一个周期都通过一个单稳态电路,变成固定宽度和固定幅度的正脉冲,然后,用电容器一滤波。频率高的时候,脉冲就密集,平均电压就高,反之,频率低的时候,脉冲就稀疏,平均电压就低。于是,也解调出来了。
以上就是关于软件无线电接收无人机信号,解调方法全部的内容,包括:软件无线电接收无人机信号,解调方法、用matlab调制解调2fsk信号、怎样调制解调器等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)