Android之唤醒锁定

Android之唤醒锁定,第1张

(1)基本使用

当需要释放唤醒锁时,应该即使释放,防止耗电增加

(2)锁超时机制

申请锁时,尽量设置超时时间,防止锁一直无法释放。

(3)权限

申请唤醒锁时,必须添加唤醒锁权限:

(4)唤醒锁级别

在创建唤醒锁时,需要传入levelAndFlags

levelAndFlags的选择有:

(5)是否保持唤醒锁

如果已经持有唤醒锁,但是没有释放,那么返回true,否则返回false;

(6)设置与唤醒锁关联的工作源

(7)释放带有标志的唤醒锁

(8)唤醒锁的计数机制

默认情况下,唤醒锁是计数的。

如果唤醒锁计数,那么 wakeLock.acquire() 的调用数量要和 wakeLock.release() 的调用数量相同;

如果唤醒锁不计数,那么主要调用一次 wakeLock.release() 就可以释放所有的唤醒锁了;

所以,为了保证唤醒锁完全释放,可以设置为不计数模式

[本章完...]

大家都知道目前的手机,平板等电子设备耗电都比较大,Android系统因为历史和开源等原因,一直对耗电支持的不是很好。特别现在很多apk完全不care耗电,动不动给你装上全家桶,还会相互间互相唤醒进程,简直就是流氓软件。从现有的应用来说,为了他们商业目的,有很多是类似要求长期后台运行的,或者定时运行的,这些服务对耗电影响都非常大。

虽然Android每次版本大更新,都对其进行了优化,加入了很多特性。比如在Android 5.0加入了JobScheduler API机制(批处理);在Android 6.0加入App Standby(应用待机),Doze休眠机制并且在Android7.0谷歌对Doze休眠机制做了进一步的优化,只要手动在后台删掉应用卡片,关屏后该应用就会被很快深度休眠。

但是应用开发工程师由于各种原因没有使用新的特性,导致用户感觉设备耗电还是很大。所以国内很多手机厂家都有对android系统的耗电进行优化,从原理来说,目前这些厂家也是主要对两方面进行优化:

1.减少定时休眠唤醒频率,比如合并应用申请的定时唤醒闹钟来唤醒已经休眠的设备。

2.减少wake lock的频率和时间。只要系统中存在任一有效的wake_lock,系统就不能进入深度休眠,但可以进行设备的浅度休眠 *** 作。wake_lock一般在关闭lcd、tp但系统仍然需要正常运行的情况下使用,比如听歌、传输很大的文件等。

可通过如下打印来确认唤醒源:

<4>[ 1321.989235] wakeup gpio0: 00000010

具体意思如下:

gpio0:表示是GPIO0

00000010:表示的是GPIO分组从高到低四个字节分别是:DCBA,每个字节的0-7bit就表示D7-D0  C7-C0  B7-B0  A7-A0.

从这里可以看出上面唤醒的GPIO是:GPIO0 PA4,对应的是RTC的中断脚。

通过dumpsys alarm命令打印可以看到哪个应用唤醒次数比较多,和总共占用的时间:

这里的唤醒统计的是:应用申请 RTC_WAKEUP 或 ELAPSED_REALTIME_WAKEUP 的Alarm。不管系统是否在休眠,都会产生Alarm,所以这里的Alarm次数与第一章中说的kernel中统计的被RTC中断唤醒的次数是匹配不上的,前都会大于后者。

看下Android系统定义的休眠唤醒不同的类型。

这个信息可以通过Project Volta里的工具historian.py将其图形化显示。

先导出bugreport

将其转换成图形化结果(目前好像只有百度浏览器才能打开这个html)

简单说明如下:

1.横轴是时间

2. wifi_scan指的是wifi处于扫描

3. wifi_running指的是wifi打开状态

4. screen指的是屏亮的状态

5. plugged指的是插入外设

6. wake_lock指的是kernel中被锁住的状态

可通过screen与wake_lock来初步确认系统是否被唤醒,如果screen是关的,然后又有wake_lock,也表明系统被唤醒并被锁住一段时间。

把上层的唤醒和wifi唤醒都关了,测试了39个小时消耗30%电量

有以下几个问题:

1.唤醒次数的确少了,但是healthd每10分钟唤醒在图上体现不出来

2.有2次唤醒后,系统被锁住10多钟才休眠下去

查看Alarm状态,可以很明显看到上层没有再去wake up

但是驱动中还看到有被RTC唤醒,经过验证是healthd唤醒的,不插充电的时候10分钟,插充电的时候1分钟间隔。这个唤醒后就更新battery的信息,上层Baterry更新下,UI刷新下。

系统被锁住10几分钟,通过log分析在wifi断开的时候,gms刚好去连接服务器,通讯很久造成wake 比较久。从下面的信息可以判断,系统目前wake lock线程最多的是gms线程。

Wake lock 在Android的电源管理系统中扮演一个核心的角色,wakelock是一种锁的机制, 只要有task拿着这个锁, 系统就无法进入休眠, 可以被用户态进程和内核线程获得。这个锁可以是有超时的或者是没有超时的, 超时的锁会在时间过去以后自动解锁。如果没有锁了或者超时了, 内核就会启动标准Linux的那套休眠机制机制来进入休眠。

提高电池续航,也就意味着减少系统和程序的电量消耗。为此 经过测试发现,每次唤醒设备,1-2秒的时候,都会消耗2分钟(个别应用更久)的待机电量,可见每次唤醒设备的时候,不仅仅是点亮了屏幕,系统也在后台处理很多事情。

电池消耗比较大,从系统的行为上分析,有两个地方影响最大

1.系统在被唤醒的期间,被一些应用wake lock比较久,造成很久时间无法再进入二级休眠。

2.系统频繁的被唤醒,系统被唤醒目前包含三个唤醒源

(1).系统上层通过AlarmMananger的接口注册rtc唤醒,

(2).wifi芯片自动唤醒,

(3).电池healthd定频唤醒。

所以如果应用比较多的时候,应用在唤醒期间动作比较多,容易造成系统被wake lock,从而不会很快的进入二级休眠。

通过上述的分析来看,系统可以优化的地方有4个方面。

1).查看系统wake lock最多的线程,看能不能优化。

2).系统上层过滤的应用唤醒行为,从而降低唤醒频率。AlarmManager包含四种类型定时策略,AlarmManager.ELAPSED_REALTIME、AlarmManager.ELAPSED_REALTIME_WAKEUP、AlarmManager.RTC、AlarmManager.RTC_WAKEUP、AlarmManager.POWER_OFF_WAKEUP。

其中应用申请RTC_WAKEUP或ELAPSED_REALTIME_WAKEUP的Alarm在系统休眠的情况下会唤醒系统。通过建立白名单或者黑名单的方式过滤此种应用的唤醒行为

3). 定时批处理一批 *** 作,压缩硬件唤醒时间,就像心跳一样,让硬件充分休息,还有就是精确监测应用请求,智能安排请求执行时间,让资源利用最大化。

4).扩大healthd的定频唤醒间隔(适度不然造成电池电量不准)

最后改一张调整过的电池状态图:


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/bake/11623783.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-17
下一篇 2023-05-17

发表评论

登录后才能评论

评论列表(0条)

保存