Java中,在HashMap可以用put(Key, Value)添加元素, 如何在LinkedHashMap中添加(Key, Value)?

Java中,在HashMap可以用put(Key, Value)添加元素, 如何在LinkedHashMap中添加(Key, Value)?,第1张

和HashMap方法一样,也是用put添加元素,LinkedHashMap也是java.util.Map的实现类

区别在于

Hashmap 是一个最常用的Map,它根据键的HashCode值存储数据,根据键可以直接获取它的值,具有很快的访问速度,遍历时,取得数据的顺序是完全随机的。 HashMap最多只允许一条记录的键为Null允许多条记录的值为 NullHashMap不支持线程的同步,即任一时刻可以有多个线程同时写HashMap可能会导致数据的不一致。如果需要同步,可以用 Collections的synchronizedMap方法使HashMap具有同步的能力,或者使用ConcurrentHashMap。

LinkedHashMap 是HashMap的一个子类,保存了记录的插入顺序,在用Iterator遍历LinkedHashMap时,先得到的记录肯定是先插入的.也可以在构造时用带参数,按照应用次数排序。在遍历的时候会比HashMap慢,不过有种情况例外,当HashMap容量很大,实际数据较少时,遍历起来可能会比 LinkedHashMap慢,因为LinkedHashMap的遍历速度只和实际数据有关,和容量无关,而HashMap的遍历速度和他的容量有关。

TreeMap实现SortMap接口,能够把它保存的记录根据键排序,默认是按键值的升序排序,也可以指定排序的比较器,当用Iterator 遍历TreeMap时,得到的记录是排过序的。

ConcurrentHashMap是线程安全的,使用环境大多在多线程环境下,在高并发情况下保证数据的可见性和一致性。

HashMap是一种键值对的数据存储容器,在JDK1.7中使用的是数组+链表的存储结构,在JDK1.8使用的是数组+链表+红黑树的存储结构,关于HashMap的实现原理可以查看 《hashMap实现原理》 。

HashMap是线程不安全的,主要体现在多线程环境下,容器扩容的时候会造成环形链表的情况,关于hashMap线程不安全原因可以查看 《HashMap线程不安全原因》

HashTable也是一种线程安全的键值对容器,我们一般都是听说过,具体使用较少,为什么线程安全的HashTable在多线程环境下使用较少,主要原因在于其效率较低(虽然效率低,但是很安全在多线程环境下)。

下面来分析一下HashTable为什么线程安全,但是效率较低的原因?

查看HashTable类,我们发现在源码中所有的方法都加上了synchronized同步关键字,这也就保证的在多线程环境下线程安全,由于所有的方法都加上了synchronized,这也就导致在一个线程获取到HashTable对象锁的时候,其他线程是不能访问HashTable中的其他方法的,比如A线程在使用HashTable的get()方法时,当B线程想使用HashTable的put()方法的时候必须等到A线程使用完get()方法并释放锁,而且B线程正好能够获取到HashTable的锁的时候才行,这样在多线程环境下就会造成线程长时间的阻塞。使其效率底下的原因所在。

在HashTable中由于在方法上设置synchronized,导致虽然是线程安全的,但是只有一个HashTable的对象锁,也就是说同一时刻只能有一个线程可以访问HashTable,线程都必须竞争同一把锁。假如容器中里面有多把锁,每把锁用于锁住容器的一部分数据,那么当多线程访问容器里面不同的数据时,多线程之间就不会存在锁的竞争,从而提高了并发访问的效率,这就是ConcurrentHashMap的 锁分段技术 。

ConcurrentHashMap是由Segment数组结构和HashEntry数组结构组成。Segment是一种可重入锁(ReentrantLock),在ConcurrentHashMap里扮演锁的角色;HashEntry则用于存储键值对数据。一个ConcurrentHashMap里包含一个Segment数组。Segment的结构和HashMap类似,是一种数组和链表结构。一个Segment里包含一个HashEntry数组,每个HashEntry是一个链表结构的元素,每个Segment守护着一个HashEntry数组里的元素,当对HashEntry数组的数据进行修改时,必须首先获得与它对应的Segment锁

ConcurrentHashMap的初始化

在ConcurrentHashMap中如何将数据均匀的散列到每一个Segment中?如果数据不能均匀的散列到各个Segment中,那么ConcurrentHashMap的并行性就会下降,好比,所有的数据都在一个Segment中,那么一个ConcurrentHashMap中就相当于只有一个锁,这和HashTable没有什么区别,所以通过一个hash()方法,将数据均匀的散列到不同的Segment中去(注意,虽然经过散列数据会均匀分散的不同的Segment中去,但是,也会有可能出现一个Segment中数据过多的问题,如果数据过多,多线程访问到的概率就会增加,导致并行度下降,如何优化解决ConcurrentHashMap中锁的加入时机和位置,这就是JDK1.8对ConcurrentHashMap所要做的事情)

查看ConcurrentHashMap的put()方法

由于put方法里需要对共享变量进行写入 *** 作,所以为了线程安全,在 *** 作共享变量时必须加锁。put方法首先定位到Segment,然后在Segment里进行插入 *** 作。插入 *** 作需要经历两个步骤,第一步判断是否需要对Segment里的HashEntry数组进行扩容,第二步定位添加元素的位置,然后将其放在HashEntry数组里。

(1)是否需要扩容

在插入元素前会先判断Segment里的HashEntry数组是否超过容量(threshold),如果超过阈值,则对数组进行扩容。值得一提的是,Segment的扩容判断比HashMap更恰当,因为HashMap是在插入元素后判断元素是否已经到达容量的,如果到达了就进行扩容,但是很有可能扩容之后没有新元素插入,这时HashMap就进行了一次无效的扩容。

(2)如何扩容

在扩容的时候,首先会创建一个容量是原来容量两倍的数组,然后将原数组里的元素进行再散列后插入到新的数组里。为了高效,ConcurrentHashMap不会对整个容器进行扩容,而只对某个segment进行扩容。

get *** 作的高效之处在于整个get过程不需要加锁,除非读到的值是空才会加锁重读。我们知道HashTable容器的get方法是需要加锁的,那么ConcurrentHashMap的get *** 作是如何做到不加锁的呢?原因是它的get方法里将要使用的共享变量都定义成volatile类型(关于volatile可以查看 《volatile synchronized final的内存语义》 ),如用于统计当前Segement大小的count字段和用于存储值的HashEntry的value。定义成volatile的变量,能够在线程之间保持可见性,能够被多线程同时读,并且保证不会读到过期的值,但是只能被单线程写(有一种情况可以被多线程写,就是写入的值不依赖于原值),在get *** 作里只需要读不需要写共享变量count和value,所以可以不用加锁。

锁的优化

在前面我们提到,在JDK1.7中ConcurrentHashMap使用锁分段的技术,提高了ConcurrentHashMap的并行度,虽然经过散列数据会均匀分散的不同的Segment中去,但是也会有可能出现一个Segment中数据过多的问题,如果数据过多,多线程访问到的概率就会增加,导致并行度下降。

在JDK1.8中ConcurrentHashMap细化了锁的粒度,缩小了公共资源的范围。采用synchronized+CAS的方式实现对共享资源的安全访问,只锁定当前链表或红黑二叉树的 首节点 ,这样只要hash不冲突,就不会产生并发,效率又提升N倍。

结构优化

在JDK1.7中ConcurrentHashMap的结构是数组+链表,我们知道链表随机插入和删除较快,但是查询和修改则会很慢,在ConcurrentHashMap中如果存在一个数组下标下的链表过长,查找某个value的复杂度为O(n),

在JDK1.8中ConcurrentHashMap的结构是数组+链表+红黑树,在链表的长度不超过8时,使用链表,在链表长度超过8时,将链表转换为红黑树复杂度变成O(logN)。效率提高

下面是JDK1.8中ConcurrentHashMap的数据结构

TreeBin:红黑树数节点     Node:链表节点

在JDK1.8中,hash()方法得到了简化,提高了效率,但是增加了碰撞的概率,不过碰撞的概率虽然增加了,但是通过红黑树可以优化,总的来说还是相较JDK1.7有很大的优化。

下面来分析put(),来观察JDK1.8中如何采用synchronized+CAS的方式细化锁的粒度,只锁定当前链表或红黑二叉树的 首节点。

(1)存储键值对,实现快速存取数据;

(2)允许键/值为null,但不允许重复的键;

(3)非同步synchronized(比同步快),线程不安全;

注:让HashMap同步: Map m = Collections.synchronizeMap(hashMap)

(4)实现Map接口,对键值对进行映射,不保证有序(比如插入的顺序)

注:Map接口有两个基本的实现,HashMap和TreeMap。TreeMap保存了对象的排列次序,而HashMap则不能。

(5)HashMap默认的容量大小是16;增加容量时,每次将容量变为“原始容量x2”

(6)HashMap添加元素时,是使用自定义的哈希算法

(1)不存储键值对,仅存储对象;

(2)不允许键/值为null;

(3)线程安全(速度慢),采用synchronize关键字加锁原理(几乎在每个方法上都加锁),;

(4)实现了Set接口,不允许集合中有重复的值。注:将对象存储在HashSet之前,要先确保对象重写equals()和hashCode()方法,

比较对象的值是否相等,以确保set中没有储存相等的对象。hashCode()可能相同,用equals()判断对象的相等性。

(5)Hashtable默认的容量大小是11;增加容量时,每次将容量变为“原始容量x2 + 1”;

(6)Hashtable没有自定义哈希算法,而直接采用的key的hashCode()。

(1)Java并发包java.util.concurrent中的一个线程安全且高效的HashMap实现

(2)不允许键/值为null;

(3)线程安全:在JDK1.7中采用“分段锁”的方式,1.8中直接采用了CAS(无锁算法)+ synchronized。

Entry:HashMap是一个用于存储Key-Value键值对的集合,每一个键值对叫做Entry,这些Entry分散存储在一个数组当中。

hashMap是在bucket中储存键对象和值对象,作为Map.Entry

bucket:HashMap初始化时,创建一个长度为capacity的Entry数组,这个数组里可以存储元素的位置被称为“桶(bucket)”,

每个bucket都有其指定索引,系统可以根据其索引快速访问该bucket里存储的元素。

loadFactor:负载因子。默认值DEFAULT_LOAD_FACTOR = 0.75f;

capacity:容量,指的是数组的长度

threshold:阈值=capacity*loadFactor。超过阈值则扩容为原来的两倍。

size:HashMap的大小,它是HashMap保存的键值对的数量。

HashMap是基于hashing的原理,底层使用哈希表结构(数组+链表)实现。使用put(key,value)存储对象,使用get(key)获取对象。

理解为,数组中存储的是一个Entry,并且作为链表头结点,头结点之后的每个节点中储存键值对对象Entry。

给put()方法传递键和值时,先对键调用hashCode()方法计算hash从而得到bucket位置,进一步存储,

HashMap会根据当前bucket的占用情况自动调整容量(超过负载因子Load Facotr则resize为原来的2倍)。

扩容扩的是数组的容量,发生碰撞后当链表长度到达8后,链表上升为红黑树,提高速度。

根据键key的hashcode找到bucket位置,然后遍历链表节点,调用equals(用来获取值对象)方法确定键值对,找到要找的值对象。

a.对key的hashCode做hash *** 作(高16bit不变,低16bit和高16bit做了一个异或)

b.计算下标(n-1) &hash,从而获得buckets的位置 //h &(length-1)

数字分析法、平方取中法、分段叠加法、 除留余数法、 伪随机数法。

其他解决hash冲突办法:开放定址法、链地址法、再哈希法。

根据hashcode来划分的数组,如果数组的坐标相同,则进入链表这个数据结构中,jdk1.7及以前为头插法,jdk1.8之后是尾插法,

在jdk1.8之后,当链表长度到达8的时候,jdk1.8上升为红黑树。存的时候按照上面的方式存,取的时候根据equals确定值对象。

1.常见问题:集合类、数据结构、线程安全、解决碰撞方法、hashing概念和方法、equals()和hashCode()的应用、不可变对象的好处

https://blog.csdn.net/weixin_42636552/article/details/82016183

https://blog.csdn.net/u012512634/article/details/72735183

https://blog.csdn.net/zaimeiyeshicengjing/article/details/81589953

https://blog.csdn.net/aura521521/article/details/78462459


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/bake/11744388.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-18
下一篇 2023-05-18

发表评论

登录后才能评论

评论列表(0条)

保存