关于函数空间介绍

关于函数空间介绍,第1张

关于函数空间介绍

[拼音]:hanshu kongjian

[外文]:function space

从集合Ω到数域 A(可取为实数域R或复数域C)的一类映射所成的集合(即函数作为点所成集合),并在此集合上赋有一定几何结构。经典分析学处理问题往往泛言或零散地看待所考虑的函数。虽有时取符合于某种规定的函数类X,但没有明确地把X当作几何的对象。现代分析学的一般方法在于视Ω为拓扑空间测度空间又以问题的需要规定类中映射(即函数):ΩA满足的条件,诸如连续性、有界性、可测性、可微性、可积性等;从几何学、拓扑学及代数学的角度,对X一方面赋与关于加法与数量乘法的封闭性,这里加法为:ƒXgXƒ+gX,(ƒ+g)(x)=ƒ(x)+ g(x),凬xΩ;数量乘法为:ƒX,λ∈AλƒX,(λƒ)(x)=λƒ(x),凬xΩ(即X对通常函数的线性运算封闭);另一方面使之成为拓扑空间,且两方面又满足一定的要求(例如线性运算关于拓扑是连续的等)。这样,函数空间X通常也是拓扑线性空间。经典分析学研究中出现了许多重要的函数空间。对一些类型的函数空间,现已取得相当丰富的理论成就。

Ω是拓扑空间,Ω上有界连续函数全体以极大模为范数时构成巴拿赫空间C(Ω)。特别当Ω是局部紧的,C(Ω)中具紧支集(函数ƒ的支集即集合{xΩ;ƒ(x)≠0}的闭包)的函数全体C0(Ω)是C(Ω)一个不完备的线性子空间。当Ω是紧的,Ω上所有连续函数必有界,它们就构成C(Ω)。对紧空间Ω的特例

C(Ω)成为收敛序列全体所构成空间C

当在Ω中定义了测度μ,在(Ωμ)上可测并使在Ω上可积(1≤p<∞)的函数ƒ的全体,赋有范数时构成巴拿赫空间即勒贝格空间lp(Ωμ)。lp(Ωμ)中序列{ƒn}收敛(称为p次平均收敛)到ƒ 即指是一希尔伯特空间,ƒgl2(Ωμ)的内积 ,在复值函数情况下l2(Ωμ)的内积为

lp(1<p<∞)空间的重要推广是奥尔里奇空间。设[0,∞)上凸非降正函数φ(s)满足。命lφ(Ωμ)表所有使φ(|ƒ(x)|)在 Ω上可积的函数ƒ(x)。若存在某固定的C>0,φ(2s)≤Cφ(s),则对某k>0使φ(kƒ(x)|)可积的函数 ƒ全体所成集合 L(Ωμ)取范数时成为一个巴拿赫空间,称为奥尔里奇空间。当φ(s)=sp(1<p<∞)时就给出奥尔里奇空间的特殊情形lp(Ωμ)。如果存在正数α使|ƒ(x)|≤α几乎处处成立(即除去一个零测度集外都成立), 称ƒ 为(Ωμ)上本质有界可测函数,所有这样函数ƒ在取本质上界 (几乎处处)}为范数时构成巴拿赫空间M(Ωμ)。对Ω是每点具有单位质量(即测度为1)的序列{1, 2,3,…,n}所成离散空间,M(Ωμ)及lp(Ωμ)(1<p<∞)分别就是熟知的序列空间mlp。当(Ωμ)的全空间Ω有有穷的测度时, 还可定义又一重要函数空间S(Ωμ), S(Ωμ)表示所有Ω上几乎处处有穷的可测函数ƒ,它是以为拟范数的弗雷歇空间,其中序列{ƒn}收敛于ƒ,即,当且仅当(即依测度收敛)。特别当Ω=(1,2,…,n,…)在点n有质量1/2n时,S(Ω)成为序列空间s

在复平面C 的区域 Ω上全纯函数的研究,引出一类函数空间,即哈代空间 hp(p≥1)和与哈代空间h1有关的有界平均振幅空间(见BMO 空间)。

Ωn 维欧几里得空间Rn的子域, 在 C(Ω)中取l(=1,2 ,…,∞) 阶连续可微于Ω的函数 ƒ, 其全体记为Cl(Ω)。Cl(Ω) 中具紧支集的函数集合记为C(Ω)。若ΩRn的子域闭包, 则ƒ 的条件改为对所有α=(α1,α2,…,αn)(其中 αi为非负整数,如l<∞;0≤|α|<∞,如l=∞),Dαƒ 有界且一致连续于IntΩ,得连续地开拓到嬠Ω,这样的ƒ全体仍记为Cc(n)(Ω)。空间Cc(n)(Ω)的序列{ƒυ}在 Cc(n)(Ω)中收敛于0当且仅当对所有α ,0≤|α|≤l(0≤|α|< ∞,如l=∞),|Dαƒυ(x)|在Ω内任何紧集上一致收敛于0,序列{ƒυ}C(Ω)在C(Ω)中收敛于0。如果ƒυ的支集(v=1,2,…)含于Ω内与v无关的紧集中而{ƒυ}在Cc(n)(Ω)中收敛于0。

对域ΩRnC∞(Ω)及 C悂(Ω)也分别记为E(Ω)及D(Ω)。它们是广义函数论中的基本函数空间(见广义函数)。对表 C∞(Ω)中使得对所有αDαƒlp (Ωm)(m 为勒贝格测度)的ƒ 全体,它是拓扑线性空间,零元的基本邻域为 也记为B(Ω)(Ω=Rn时,Ω 得从记法中略去)。C∞中满足急减条件

(对一切α,一切k>0)的函数ƒ 所成急减函数空间记为φ,φ中零元的基本邻域是

正整数k。称C∞中ƒ 满足缓增条件,如|Dαƒ(x)|为|x|的一多项式P(依赖于α)所控制,即|Dαƒ(x)|≤|P(x)|,凬α,│x│→∞;这样的ƒ 所成的缓增函数空间记为 MM中序列{ƒυ}收敛于零元指对每个α与每个φ∈φ,在Rn上一致收敛于0。

子域ΩRn上索伯列夫空间

是巴拿赫空间,范数

Dαƒ表此空间中函数 ƒ在索伯列夫意义上的广义导数;。 索伯列夫空间对研究偏微分方程问题解有重要意义且与其他函数空间概念有联系。

随着不同函数空间的提出,常要了解对偶空间的组成和性质。从熟知的C([0,1])与有界线性泛函数的表达推广得知:对紧空间ΩC(Ω)的对偶空间同构于Ω中波莱尔集所成集合上定义的可列可加集函数 φ所组成的集合BV(Ω),它在以φΩ上的全变差为范数时为巴拿赫空间。对于和lq(Ωμ),lp和lq分别互为对偶空间。M(Ωμ)的对偶空间同构于一赋范空间,它的元φ是定义在Ω中所有可测集上的有限可加集函数,绝对连续(即对于Ω上测度μμ(N)=0崊φ(N)=0)且在Ω上具有界变差,φΩ上全变差为范数‖φ‖。l1(Ωμ),l1,с的对偶空间分别同构于M(Ωμ),ml1。

D、φ、E的对偶空间分别为D′、φ′、E′。因为DφE、D′φ′E′。D′的元称为施瓦兹广义函数。满足条件(对任何整数k>0)的广义函数T称为急减广义函数,其全体记为婞。从上面的规定及拓扑线性空间理论,有以下包含关系(1≤p<q<∞):

略去φ,φ′,M ,婞则上面包含关系对于以子域ΩRn取代Rn时仍成立。

两线性空间AB间包含关系,用记法AB,在集合及代数结构意义上理解。有时两线性拓扑空间AB间包含关系AB同时还表示映射AB是连续的,这时ABA单射入B。在函数空间,广义函数的空间,索伯列夫空间方面有许多这类关系,最常见的如lp(Ωμ)嶅lq(Ωμ),q<p

欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/bake/4702969.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-11-07
下一篇 2022-11-07

发表评论

登录后才能评论

评论列表(0条)

保存