测井在天然气水合物勘探与评价中的应用

测井在天然气水合物勘探与评价中的应用,第1张

陆敬安

(广州海洋地质调查局 广州 510760)

作者简介:陆敬安,男,(1970—),博士,高级工程师,主要从事综合地球物理资料解释工作。

摘要 测井是水合物深入勘探阶段—钻探阶段的必要手段,已得到较好应用。文章综合介绍和分析了ODP204航次、加拿大西北马更些河三角洲地区Mallik 5L-38井、IODP311航次及日本南海海槽等较新的水合物钻探调查的测井方法与技术,重点分析了核磁测井、电磁波测井及偶极横波测井等测井新技术在水合物勘探与评价中的应用,对测井方法在水合物勘探中存在的问题进行了讨论。

关键词 天然气水合物 测井方法 测井解释

1 前言

测井方法在油气藏勘探和开发过程中得到了广泛的应用,由于水合物的发现与研究相对较晚,测井方法在天然气水合物中勘探中的应用也只是随着钻探工作的开展而有了应用的空间。由于天然气水合物存在于合适的温压条件环境中,一旦脱离该条件,水合物即分解。因此,能够在原位地层压力和温度条件下测量地层物理特性的测井方法对发现和研究天然气水合物来说是其它的勘探方法所不能替代的(高兴军等,2003)。到目前为止,已有的水合物钻孔勘探中几乎都使用了测井方法,如危地马拉的570号钻孔、ODP164航次(Paull,CK,Matsumoto,2000)、State Ellien-2及日本南海海槽天然气水合物钻探、ODP204航次、Mallik 5 L-38井及IODP311航次等。测井方法对含水合物沉积层的识别起到了良好的效果。在水合物钻探过程中,一个井场往往要钻几口井,分别用于随钻测井、钻探取芯及电缆测井等。随钻测井方法与电缆测井是在钻井的不同阶段进行的,同样的测井方法原理基本相同。根据以往的情况分析,不是所有的水合物钻探都使用了随钻测井。作为测井工作的一部分及为了全面了解水合物测井方法及其特点,本文将分别加以介绍。

2 测井方法概述

21 随钻测井

天然气水合物钻探中随钻测井(LWD)的主要目的之一是为了确定合适的取芯位置。通常随钻测井与随钻测量(MWD)同时进行。LWD和MWD仪器测量不同的参数,MWD仪器位于紧邻钻头之上的钻环中,用于测量井下钻探参数(如钻头重量、扭矩等)。LWD和MWD仪器的差别是LWD数据被记录到井下内存当中并在仪器到达海面之后取出数据,而MWD数据是通过钻杆内的流体以调制压力波(或泥浆脉冲)的形式传输并进行实时监控。在LWD和MWD两种仪器联合使用的情况下,MWD仪器可同时将两种数据向井上传输。在最新的水合物钻探中,日本南海海槽的天然气水合物钻探、ODP204航次及IODP311航次使用了LWD测井,所使用的仪器名称及其输出参数见表1。

表1 天然气水合物随钻测井和随钻测量方法 Table1 The LWD&MWD tools description used for gas hydrate logging

204航次中使用的LWD和MWD仪器有钻头电阻率仪(RAB)、能量脉冲MWD仪、核磁共振仪(NMR-MRP)及可视中子密度仪(VND),如图1 所示,图中GVR6 为可视地层电阻率仪,包括深、中、浅电阻率及环带电阻率和自然伽玛五种测量。这是NMRMRP仪器首次用于ODP航次。不同的测井方法组合在不同的测井场合有不同的名称,如在日本的天然气水合物钻探中,密度与中子组合在一起称为CDN、伽马射线和电阻率组合称为CDR,尽管名称存在差异,但其测量的物理参数是一致的。

LWD测量被安排在钻孔之后及钻探或取芯作业所引起的负面效应之前进行。由于钻探和测量相距的时间较短,相对于电缆测井而言钻井液对井壁的侵入处于轻微阶段。

图1 ODP204航次使用的随钻测井及随钻测量仪器串

(图中数字单位为米,从钻头最底部算起)

Fig1 LWD&MWD Tools Used in ODP204

(The unit of the number is meter and starts from the bottom)

LWD设备由电池提供电源并使用可擦写/编程的只读存储器芯片来存储测井数据。LWD仪器以等时间间隔的方式开展测量并与钻井架上监控时间和钻探深度的系统同步。钻探之后,LWD仪器被收上来下载数据。井上和井下时钟的同步能够使得将时-深数据与井下时间测量数据合并成一个深度测量的数据文件。最终的深度测量数据被传送到船上的实验室进行整理和解释。

22 电缆测井

电缆测井对天然气水合物储层的精确定量评价起非常重要的作用。由于天然气水合物储层的电阻率及声波速度明显偏高,因此电阻率测井和声波测井是识别天然气水合物的有效方法。另外,精确的评价天然气水合物储层还需要结合其它测井方法进行综合评价。天然气水合物钻探中使用过的电缆测井方法见表2,这些测井方法的详细介绍可在有关书籍和文件中找到。一些较新的测井技术,如FMI、DSI、EPT、CMR等测井方法在ODP204航次(Tréhu,AM,Bohrmann,2003)、Mallik 5L-38及日本南海海槽天然气水合物的识别和评价过程中发挥了重要作用。

表2 天然气水合物电缆测井方法 Table2 The wireline logging methods for gas hydrate exploration

续表

表2中大部分测井仪为204航次使用的方法,EPT在Mallik 5L-38井中首次使用,日本南海海槽的天然气水合物钻井勘探中使用了CMR仪(Takashi UCHIDA,Hailong LU,2004)。

3 水合物测井评价

天然气水合物储层测井评价的关键问题之一是建立合适的储层评价模型(手冢和彦,2003)。根据岩心观察,天然气水合物在沉积物中的分布主要有以下几种情形(王祝文等,2003):分散胶结物、节状、脉状及块状。永久冻土带及海洋天然气水合物的储层模型如图2所示。模型共分四类,其中永久冻土带两类:冻土层内及冻土层下,二者的区别为在冻土层之下,流体部分含自由水,而在冻土层内部流体部分含冰成分;海洋天然气水合物也分两类:一类为流体部分含自由水,另一类为流体部分含游离气。在ODP204航次及日本的南海海槽水合物钻探中使用模型C对测井资料进行解释,而在Mallik井中则使用的是模型A。模型A和C均是基于常规油气评价的双水模型提出的。

由于天然气水合物具有独特的化学成分及特殊的电阻率和声学特性,因此,通过了解天然气水合物储层的这些特征应有可能获得天然气水合物饱和度及沉积孔隙度(陈建文,2002;王祝文等,2003),这也是两个最难确定的储层参数。钻井是获取孔隙度及烃饱和度的重要数据来源。本质上,目前大部分的天然气水合物测井评价技术还是定性的,且借用的是未经证实的石油工业使用的测井评价方法。为了证明标准的石油测井评价技术在评价天然气水合物储层中的有效性,还需要进行大量的实验室和现场测量。由于天然气水合物以不同的方式影响每种孔隙度测量方法,因此可通过对比不同的孔隙度测量技术来估计天然气水合物的数量。

图2 永久冻土及海洋天然气水合物储层模型

Fig2 The reservoir models for permafrost and marine gas hydrate

31 孔隙度评价

天然气水合物储层的孔隙度评价所利用的测井数据主要包括电阻率测井、密度测井、声波测井、中子测井、核磁共振测井等与地层孔隙密切相关的地层物理响应,同时还辅以自然电位、自然伽玛、岩心分析等数据来进行的。有关文献已经对部分常规测井方法的应用作了介绍,这里仅介绍较新的测井手段及其解释方法。

32 饱和度评价

(1)电磁波传播测井

电磁波传播测井仪只在 Mallik 5L-38井中使用过(SRDallimore,TSCollett,2005),电磁波传播测井的垂向分辨率高于5cm,用来测量天然气水合物的原位介电特性,据此计算天然气水合物的饱和度。天然气水合物储集带的平均介电常数为9,在5到20之间变化;带内的平均电阻率超过5Ω·m,当仪器的工作频率为11GHz时,电阻率在2Ω·m到10Ω·m之间变化。电磁波传播测井仪同时输出传播时间及信号衰减两个参数。地层的介电常数及电导率可由下式计算(Y-FSun,DGoldberg,2005):

南海地质研究2006

南海地质研究2006

式中:tpl为慢度或传播时间,单位ns/m;a为衰减量,单位为db/m;εr为相对介电常数,无量纲;σ为电导率,单位为西门子/s,c(=03m/ns)为真空中光的速度。

YFSun及DGoldberg等采用等效介质方法并假定含天然气水合物地层的多相系统可近似为连续、均质及各向同性介质,认为含天然气水合物介质的等效磁导率为1,其介电常数及体积密度遵从下面的体积平均混合规则:

南海地质研究2006

南海地质研究2006

南海地质研究2006

式中,φa为第a种成分的体积百分比,ρa和εa分别是第a种成分的密度和介电常数,ρ和εr分别为体密度及体介电常数。这里假定孔隙性介质仅包含三种组分:固体颗粒、天然气水合物及水。从而上面的公式可以简化为:

ρ=(1-φ)ρs+φShρh+φ(1-Sh)ρw (6)

南海地质研究2006

式中,φ为总孔隙度,Sh为天然气水合物的饱和度,ρs、ρh及ρw分别为固体颗粒、天然气水合物及水的密度,εrs、εrh及εrw分别为固体颗粒、天然气水合物及水的介电常数。在已知每种组分的密度和介电参数情况下,就可依据介电和密度测井由上面的方程计算出含天然气水合物地层的孔隙度和水合物饱和度。

图3所示为电磁波传播测井在Mallik 5 L-38井中含水合物层的传播时间与电阻率图。从图中可以看出,电磁波传播时间曲线与声波传播时间曲线具有相似的趋势,但其分辨率更高。右边的电阻率曲线道上,电磁波传播电阻率的分辨率也明显高于感应电阻率。

图4为根据电磁波传播测井求出的地层孔隙度及天然气水合物饱和度。图中中子孔隙度的数值偏高,这是由于中子孔隙度测量的含氢指数不仅与游离态的氢有关,还与束缚水中的氢有关。由于电磁波传播测井具有较高的垂向分辨率,因此其在揭示含天然气水合物层的细微结构方面拥有独特的能力。

(2)声波测井

与不含天然气水合物的沉积层相比,含有天然气水合物的沉积层呈现出相对较高的纵波和横波速度。目前已提出了许多不同的速度模型来预测天然气水合物对d性波速度的影响,如时间平均方程、等效介质理论、孔隙填充模型、胶结理论、加权方程及改进的Biot-Gassmann理论(BGTL)等。以下介绍BGTL的基本理论及应用效果。

根据纵横波速度的如下关系式:

Vs=VpGα(1-φ)n (8)

式中,Vp为纵波速度,Vs为横波速度,α为骨架物质的Vs/Vp比值,n的值取决于不同的压力和固结程度,φ为孔隙度,G为取决于骨架物质的参数,Lee(2003)推导出了下面的剪切模量μ:

南海地质研究2006

其中,

南海地质研究2006

式中的kma、μma、kfl及β分别为骨架的体积模量、骨架的剪切模量、流体的体积模量及Biot系数。

Biot-Gassmann理论给出了沉积物体积模量的计算方法:

k=kma(1-β)+β2M (11)

饱和水的沉积物的d性波速度可由下式依据d性模量计算:

南海地质研究2006

图3 电磁波传播测井曲线与声波及感应电阻率曲线的对比

(其中声波传播时间、电磁波传播时间较低段及电阻率显示高阻值段为水合物层)

Fig3 The comparison of logging curves between EPT,acoustic and induction

(The depth interval between 9065~925meters is the gas hydrate zone)

式中ρ为地层的密度。

对于松软岩石或未固结的沉积物,采用如下的Biot系数

南海地质研究2006

对于坚硬或固结的地层,采用Biot系数为

β=1-(1-φ)38 (14)

Lee(2003)建议采用下面的方程计算n值:

图4 电磁波传播测井计算出的地层孔隙度及天然气水合物饱和度

Fig4 The porosity and gas hydrate saturation calculated from by EPT logging

南海地质研究2006

式中,p为差分压力(MPa),m代表固结或压实对速度的影响。实际问题中,∂φ/∂p很少知道,上式中的m很难直接应用。测量数据分析表明固结沉积物的m值为4~6,未固结沉积物的m值为1~2。

参数G用于补偿当骨架为富含粘土的砂岩时实测值与预测值之间的差异。对于泥质砂岩,G值为:

南海地质研究2006

其中,Cv为粘土含量百分比。对于含天然气水合物沉积有如下的求取G的方程:

南海地质研究2006

式中Ch为孔隙空间中天然气水合物的浓度。Lee(2002)指出含天然气水合物沉积的n=1及G=1。由于这些参数是在没有考虑速度发散的情况下在超声频率范围由速度获得的,因此参数n和G可以认为是用来拟合测量数据的自由调节参数。图5为根据纵波速度及NMR孔隙度求出的天然气水合物浓度对比图。

图5 由纵波求出的天然气水合物浓度及由NMR求出的天然气水合物饱和度

Fig5 The gas hydrate saturation calculated from P-wave and NMR

根据分析结果可知,当采用声波数据估计天然气水合物浓度时,P波速度优于S波速度,主要原因是当采用P波速度时与BGTL中的n和G参数有关的误差较小;另外,在纯砂岩层段,NMR孔隙度测井估计的天然气水合物浓度值略高于由P波速度估计的数值。

(3)核磁共振测井

核磁共振测井在描述天然气水合物沉积方面起着重要作用。如果与密度孔隙度测量结合起来,可能是获取天然气水合物饱和度的最简单同时也是最可靠的手段。核磁共振测井仪仅对孔隙空间中的液态水有响应,对天然气水合物没有响应。计算储层孔隙度和天然气水合物饱和度的公式如下:

南海地质研究2006

南海地质研究2006

式中,水的氢指数HIw≅1,甲烷水合物的NMR视氢指数HIh=0。水的密度ρw=10g/cm3,天然气水合物的密度ρh=091g/cm3,砂岩骨架的密度ρma=265g/cm3,Ph为天然气水合物的NMR极化校正值,仅与HIh伴生出现。λ=0054,因此

南海地质研究2006

声波和电阻率测井求出的饱和度在大部分层段是一致的,而在1003~1006m、1014~1020m之间,三种方法给出了三种不同的结果。而核磁共振方法与另两种确定的方法得到的结果不一致,造成这种不一致的原因目前尚不得而知,有待于进一步分析。

33 地层应力分析

图6 1088m深度处天然气水合物层段发散曲线

图6中a)图分别为快横波偶极挠曲波(红色)、慢横波偶极挠曲波(深蓝色)、低频单极斯通利波(淡蓝色)及高频单极斯通利波(绿色);b)图为相应的平均谱特征。

Fig6 The dispersion curves from the gas hydrate interval at a depth of 1088m

a)The dispersion curves for the fast shear dipole-flexural(red),the slow shear dipole-flexural(dark blue),the low frequency monopole stoneley(light blue)and high frequency monopole stoneley(green);b)Average spectral characteristics

交叉偶极声波测井数据提供了描述地层横向各向异性的条件。传统的处理是在时间域进行的,得到的是地层各向同性或各向异性特征(Lee,MW,2002)。声波各向异性既可以是内在的,也可以是应力诱导的。最近的研究表明交叉偶极测井数据的频域处理可以将内在各向异性与应力诱导的各向异性区分开。交叉偶极测井数据的频域处理还使得对地层横波慢度的径向变化描述成为可能,对交叉偶极挠曲波的慢度频域分析还表明低频部分的探测深度达到六倍的井孔半径,可探测到原状岩石,而高频部分的偶极挠曲波则可以穿透一倍井孔半径的深度,探测到机械损坏区。高频测量数据偏离均质、各向同性模型则是机械破坏的指示。分析偶极发散曲线可以估计机械破坏区的深度。

声波数据的处理分两步进行:①慢度及各向异性分析,及②发散曲线分析。

图6及图7所示分别为含天然气水合物层及水填充的各向异性层段的发散曲线。曲线发散分析是了解声波波形数据的有效方法。在低频段,挠曲波穿透能力深至地层并可探测到远场应力;在高频段,挠曲波探测靠近井周的应力。图6a的纵波首波慢度大约为300us/m,它是非扩散型的且最大激发频率超过8 kHz。斯通利波慢度为850us/m,同时含有淡蓝色及绿色的点,表明低频和高频单极激发都能产生斯通利波。两条正交的偶极挠曲波发散曲线相互重叠。这是在垂直于井孔的平面内地层为各向同性的关键指示。

图7 11128m深度处水填充各向异性层段发散曲线

Fig7 Dispersion curves from the water-filled anisotropic interval at a depth of 11128m

a)The dispersion curves for the fast shear dipole-flexural(red),the slow shear dipoleflexural(dark blue),the low frequency monopole stoneley(light blue)and high frequency monopole stoneley(green);(b)Average spectral characteristics

图7a所示与图6a所示具有明显的不同,即它是各向异性层。偶极挠曲波清楚显示出在低频段的各向异性特征。地层的快横波慢度约为900us/m,而慢横波约为1100us/m。这指示出了22%的各向异性。与含天然气水合物层段相比,纵波数据高度发散。

4 结论

测井技术在天然气水合物勘探的高级阶段是必不可少的工具,其对天然气水合物储层参数的精确评价对计算天然气水合物的储量至关重要,并为天然气水合物的开采提供准确的层位定位及基础数据。测井方法的发展日新月异,数据解释的精度也不断提高,在利用测井技术研究天然气水合物储层时仍限于移植油气评价方法,由于天然气水合物在地层中具有不同于油气的赋存状态,对于这样做的合理性还有待于深入的研究。根据以上研究成果得出以下结论:

1)电磁波传播测井由于具有较高的垂向分辨率,对于较薄的地层显示出较其它测井方法具有精细评价饱和度的优势;

2)核磁共振测井反映的是自由流体所占的孔隙空间,有利于详细评价自由水、束缚水及水合物所占的空间,但有关核磁测井的精细解释尚需建立在实验分析的基础上;

3)偶极声波测井对预测地层各向异性及应力分布有良好的效果;

4)另外,还应开展对天然气水合物样品的实验室研究,以便对测井解释结果进行刻度。

参考文献及参考资料

陈建文2002天然气水合物及其实测的地球物理测井特征,18(9):28~29

高兴军,于兴河,李胜利,段鸿彦2003地球物理测井在天然气水合物勘探中的应用,地球科学进展,18(4):305~311

手冢和彦,等2003天然气水合物的测井解析,海洋地质动态,19(6):21~23

王祝文,李舟波,刘菁华2003天然气水合物的测井识别和评价,23(2):97~102

王祝文,李舟波,刘菁华2003天然气水合物评价的测井响应特征,物探与化探,27(1):13~17

Lee MW2003Velocity ratio and its application to predicting velocities:United States Geological Survey,Bulletin 2197,15p

Lee,MW2002Biot-Gassmann theory for velocities of gas hydrate-bearing sediments,Geophysics,V67,1711~1719

Paull C K,Matsumoto R,Wallace P J,and Dillon,W P(Eds)2000Proceedings of the Ocean Drilling Program,Scientific Results,Vol164

SRDallimore and TSCollett(ed)2005Geological Survey of Canada Bulletin 585,Scientific results from the Mallik 2002 Gas Hydrate Production Research Well Program,Mackenzie Delta,Northwest Territories,Canada

Takashi UCHIDA,Hailong LU,Hitoshi TOMARUand the MITI Nankai Trough Shipboard Scientists,Subsurface Occurrence of Natural Gas Hydrate in the Nankai Trough Area:Implication for Gas Hydrate Concentration RESOURCE GEOLOGY,Vol54,No1,35~44,2004

Tréhu A M,Bohrmann G,Rack F R,Torres M E,et al2003Proceedings of the Ocean Drilling Program,Initial Reports Volume 204

Y-FSun,DGoldberg,Analysis of electromagnetic propagation tool response in gas-hydrate-bearing formations,in Scientific Results from the Mallik 2002 Gas Hydrate Prodction Research Well Program,Mackenzie Delta,Northwest Territories,Canada,(ed)SRDallimore and TSCollett;Geological Survey of Canada,Bulletin 585,8p

The Application of Well Logging To Exploration And Evaluation of Gas Hydrates

Lu Jingan

(Guangzhou Marine Geological Survey,Guangzhou,510760)

Abstract:Well logging is the indispensable approach when the exploration of gas hydrates step into drilling and good results has been illustratedThe paper briefly introduces and construes the well logging technologies employed in the exploration of gas hydrates of Mallik 5 L-38,IODP311 and MITI Nankai-trough wellThe emphasis lies in the analysis of the application of NMR,EPT and DSI logging to exploration and evaluation of gas hydratesAlso some issues during the well log interpretation of gas hydrates are discussed

Key Words:Gas hydrates Well logging methods Well logging interpretation

BIoT领域内生态商家在围绕线下和线上建立一体化经营体系的过程中,会涉入到产业链更多环节,向更广泛的场景中渗透,通过全流程的数据沉淀驱动商业效益、效率的飞跃,是能够开拓新商业模式的。尤其是如今全球疫情的情况下,物联网革命开始得到认可和关注,物联网技术的发展与应用加速,人类正迎来一个全新的数字时代。商米将继续联手合作伙伴,助力全球线下门店进行数字化升级变革,为商家经营和持续增长赋能。

感知层:底层数据采集职能,包括芯片、连接芯片和应用设备的模组、传感器、各类识别技术等

1、芯片:低功耗、高可靠性的半导体芯片应用广泛,MCU/SoC逐渐渗透物联网领域。MCU芯片复杂度较低,适用于智能设备的短距离信息运输,主要应用于智能家居、消费电子、医疗保健和工业电子等领域;SoC芯片系统复杂度较高,集成功能更丰富,支持运行多任务复杂系统,可应用于功能较复杂的嵌入式电子设备,应用于无人机、自动驾驶和工业互联网等领域

2、无线模组:为物联网提供网联能力的基础硬件,将芯片、存储器和功放器件等集成在一块线路板上,并提供标准接口,在物联网产业中处于承上启下的中间环节,向上连接芯片行业,向下连接各类终端设备,终端设备借助无线模组实现通信或定位的功能。

3、传感器:作为物体的“五官”,传感器承担采集数据、感知世界的重任,不断向智能化、高精度、微型化的方向发展,市场空间广阔。传感器与MEMS结合是当下技术的新趋势,MEMS传感器集成通信、CPU、电池等组件及多种传感器,具有体积小、功耗低、成本低、集成度高、智能化特点,广泛应用于消费电子、医疗和车联网等领域。

涉及企业:

芯片

翱捷科技:具备全球稀缺的全制式蜂窝基带芯片研发能力的平台型芯片设计企业。2015年成立以来一直专注于无线通信芯片的研发和技术创新。公司各类芯片产品可应用于手机、智能穿戴设备为代表的消费电子市场和以智慧安防、智能家居、自动驾驶为代表的智能物联市场。

先科电子:领先的高质量模拟和混合信号半导体产品供应商。成立于1960年,主要为客户提供电源管理、保护、高级通信。人机界面、测试与测量以及无线和感应产品方的专有解决方案。

广芯微电子:成立于2017年,一家为客户提供创新解决方案的集成电路设计企业,公司开发包括面向工业物联网(IIoT)并支持边缘计算的专用处理器芯片、面向LPWA的IoT连接专用芯片、IoT基带处理器芯片、以及应用于传感器信号调理的专用芯片。

华为海思:全球领先的Fabless半导体与器件设计公司,前身为华为集成电路设计中心,2004年注册成立实体公司,提供海思芯片的对外销售及服务。

联发科:全球第四大无晶圆半导体公司,联发科技的核心业务包括移动通信、智能家居与车用电子,着重研发适用于跨平台的芯片组核心技术,联发科的芯片经过优化,能在极低散热量且极度节能的模式下运行,以延长电池续航力,时时刻刻达到高效能、高电源效率与连网能力的完美平衡。

紫光展锐:我国集成电路设计产业的龙头企业。公司于2013年成立,致力于移动通信和物联网领域核心芯片的研发及设计,产品包括移动通信中央处理器、基带芯片、AI芯片、射频前端芯片、射频芯片等各类通信、计算及控制芯片,其物联网解决方案支持众多智能电子产品,包括智能手机、平板电脑、Wi-Fi调制解调器、家用设备、可穿戴设备、互联汽车产品等。

移芯通信:为中国自主研发的超低功耗NB-IoT和Cat-M物联网芯片供应商。公司于2017 年成立,2020年12月完成B轮融资。主要业务为蜂窝物联网芯片的研发和销售,致力于设计全球极致性价比的蜂窝物联网基带芯片。

高通:是全球领先的无线科技创新者,也是5G研发、商用与实现规模化的推动力量。成立于1985年,1991年在纳斯达克上市。Qualcomm主要研发无线芯片平台和其它产品解决方案,凭借行业领先的技术解决方案以及在标准组织中的积极贡献,Qualcomm成为赋能无线生态系统不可或缺的一部分。

诺领科技成立于2018年9月,是探索满足IoT需求的全集成、低功耗无线SoC解决方案的先行者。诺领科技作为一家广域无线物联网芯片设计公司,拥有射频模拟、基带通信系统、GNSS、SoC系统和软件方面的顶尖人才,致力于发布最佳SoC解决方案。公司目前推出的产品包括物联网系统级芯片NB-IoT和Cat-M SoCs,服务于广泛的市场,其中包括智慧城市、可穿戴设备、资产追踪等等。

芯翼信息是5G物联网端侧SoC创新领导者。成立于2017年3月,公司专注于物联网通讯芯片(NB-IoT)的研发和销售。其产品XY1100是全球首颗single  die集成CMOS  PA的量产NB-IoT  SoC,具有超低功耗、超小体积模块设计和开发灵活等优势,可应用于智慧气表、智慧水表、烟感、电动车、物流跟踪、智慧穿戴等应用场景。

智联安科技是一家专业从事芯片设计的国家高新技术企业。成立于2013年9月,公司总部位于中国北京,在硅谷、武汉、合肥等多地设有子公司和技术研发中心。公司致力于无线通信芯片的技术研发,目前已于2019年8月成功完成NB-IoT终端通信芯片MK8010量产流片,并在多个行业中实现落地应用。

中兴微电子为中国领先的通信IC设计公司。成立于2003年,中兴微电子专注于通信网络、智能家庭和行业应用等通信芯片开发,自主研发并成功商用的芯片达到100多种,覆盖通信网络“承载、接入、终端”领域,服务全球160多个国家和地区,连续多年被评为“中国十大集成电路设计企业”。

Nordic Semiconductor北欧半导体是专注研究物联网无线技术无晶圆厂半导体公司。公司专注于低功耗无线技术产品,包括短距离蓝牙,2020年从Imagination Technologies收购的Wi-Fi技术和LTE-M / NB-IoT蜂窝物联网解决方案。

Marvell美满是高性能数据基础架构产品的全球半导体解决方案提供商。成立于1995年,Marvell专注模拟,混合信号,计算,数字信号处理,网络,安全性和存储领域,提供产品和解决方案来满足汽车,运营商,数据中心和企业数据基础架构市场日益增长的计算,网络,安全性和存储需求。公司当前的产品主要包括两大类:网络和存储。

Broadcom博通是全球领先的有线和无线通信半导体公司。拥有50年来的创新,协作和卓越工程经验,公司设计提供高性能并提供关键任务功能的产品和软件,包括半导体解决方案和基础设施软件解决方案,半导体解决方案主要包括明星级的有线基础设施业务(以太网交换芯片/数据包处理器/ASCI等)和无线芯片业务(Wi-Fi 芯片/蓝牙/GPS 芯片等)。基础设施软件部门主要包括主机、企业软件解决方案和光纤通道存储区域网络业务。

NXP恩智浦半导体公司是嵌入式应用安全连接解决方案的全球领导者。公司于2006年在荷兰成立,前身为荷兰飞利浦公司于1953年成立的半导体事业部,致力于为客户提供广泛的半导体产品组合,包括微控制器,应用处理器,通信处理器,连接芯片组,模拟和接口设备,RF功率放大器,安全控制器和传感器等

乐鑫科技是一家专业的物联网整体解决方案供应商。公司在2008年4月成立于上海,是一家主要从事智能物联网Wi-Fi  MCU通信芯片与模组研发设计与销售的公司。公司采用Fabless的经营模式,将晶圆制造、封装和测试环节委托于专业代工厂商。近年来,公司牢牢把握智能物联网行业的机遇,主要产品Wi-Fi MCU通信芯片目前主要运用于智能家居、智能照明、智能支付终端、智能可穿戴设备、传感设备及工业控制等物联网领域

晶晨股份是全球布局、国内领先的集成电路设计商。成立于2003年,公司专注于为多媒体智能终端SoC芯片的研发、设计与销售,芯片产品主要应用于智能机顶盒、智能电视和AI音视频系统终端等科技前沿领域。公司属于典型的Fabless模式IC设计公司,将晶圆制造、芯片封装和芯片测试环节分别委托给专业的晶圆制造企业和封装测试企业代工完成,自身则长期专注于多媒体智能终端SoC芯片的研发、设计与销售,已成为智能机顶盒芯片的领导者、智能电视芯片的引领者和AI音视频系统终端芯片的开拓者。

蜂窝模组企业

移远通信:全球领先的物联网模组龙头。公司成立于2010年,从事物联网领域无线通信模组及其解决方案的设计、生产、研发与销售服务,可提供包括无线通信模组、物联网应用解决方案及云平台管理在内的一站式服务。

广和通:作为首家上市的无线通讯模组企业,近十年为公司业务的快速发展期。成立于1999年,并于2017年在深圳证券交易所创业板上市,成为中国无线通讯模组产业中第一家上市企业。公司主要从事无线通信模块及其应用行业的通信解决方案的设计、研发与销售服务。

美格智能:全球领先的无线通信模组及解决方案提供商。成立于2007年,美格智能专注于为全球客户提供以MeiGLink品牌为核心的标准M2M/智能安卓无线通信模组、物联网解决方案、技术开发服务及云平台系统化解决方案。

日海智能:通信行业连接设备龙头,成立于2003年,2017年相继收购了龙尚科技与芯讯通,入股美国艾拉,在国内率先实现了“云+端”的物联网战略布局,卡位物联网发展关键环节;在2018年重新确立了AIoT人工智能物联网发展战略,

高新兴:全球领先的智慧城市物联网产品与服务提供商。成立于1997年,公司长期致力于研发基于物联网架构的感知、连接、平台层相关产品和技术,从下游物联网行业应用出发,以通用无线通信技术和超高频RFID技术为基础,融合大数据和人工智能等技术,实现物联网“终端+应用”纵向一体化战略布局,构筑物联网大数据应用产业集群,并成为物联网大数据应用多个细分行业领先者,服务于全球逾千家客户。目前公司正处于战略和资源进一步聚焦阶段,重点聚焦车联网和执法规范化两大垂直应用领域。

有方科技:物联网接入通信产品和服务提供商。成立于2006年,公司致力于为物联网行业提供稳定可靠的接入通信产品和服务。公司的主营业务为物联网无线通信模块、物联网无线通信终端和物联网无线通信解决方案的研发、生产(外协加工方式实现)及销售。

合宙通信:一家专业提供物联网无线通信解决方案技术产品和服务的高科技企业。成立于2014年,公司致力于提供基于通信模块的智能硬件、软件平台、云平台等综合解决方案

鼎桥通信:行业无线解决方案的领导者。成立于2005年,公司专注于无线通信技术与产品的创新,布局三大业务板块:行业无线、物联网&5G、行业定制终端。

锐明技术:全球商用车载监控龙头。成立于2002年,公司聚焦商用车视频监控和车联网18年,细分行业龙头公司,产品覆盖商用车全系车型。公司外销“商用车通用监控产品”,内销“商用车行业信息化产品”,全球累计超过120万辆商用车安装有公司的产品

传感器

奥比中光:一家全球领先的AI 3D 感知技术方案提供商。公司成立于2013年,在2020年12月进行上市辅导备案。公司拥有从芯片、算法,到系统、框架、上层应用支持的全栈技术能力,主要产品包括3D视觉传感器、消费级应用设备和工业级应用设备技术产品,其AI 3D 感知技术广泛应用于移动终端、智慧零售、智能服务、智能制造、智能安防、数字家庭等领域。

歌尔股份:一家电子元器件制造商,成立于2001年,属于消费电子行业,主营业务可分为精密零组件业务、智能声学整机业务和智能硬件业务。

汉威科技:气体传感器龙头企业,成立于1998年,并于2009年10月作为创业板首批上市公司在深交所创业板上市。公司致力于气体传感器和仪表的制造、并提供物联网解决方案

联创电子:成立于1998年,公司主营业务为研发、生产和销售触控显示类产品和光学元件产品。公司现已形成光学镜头和触控显示两大业务板块,主要产品包括高清广角镜头、平面保护镜片、手机触摸屏、中大尺寸触摸屏、显示模组、触控显示一体化模组等

瑞声科技:全球领先的智能设备解决方案提供商,在声学、光学、电磁传动、精密结构件、射频天线等领域提供专有技术解决方案。公司成立于1993年,公司是电磁器件、射频天线、精密结构件等多个细分领域的行业冠军,也是5G天线产品的重要供应商

睿创微纳公司是一家专业从事专用集成电路、红外热像芯片及MEMS传感器设计与制造,成立于2009年。公司具有完全自主的知识产权,为全球客户提供性能卓越的红外成像MEMS芯片、红外探测器、ASIC 处理器芯片、红外热成像与测温机芯、红外热像仪、激光产品光电系统。

远望谷:我国物联网产业的代表企业,成立于1999年,公司主营业务集中在物联网感知层和应用层,为多个行业提供基于RFID技术的系统解决方案、产品和服务。

金溢科技:一家智慧交通与物联网核心设备及解决方案提供商。公司创立于2004年,公司产品主要包括高速公路ETC产品、停车场ETC产品、多车道自由流ETC产品和基于射频技术的路径识别产品。

杭州士兰微电子:一家专业从事集成电路芯片设计以及半导体微电子相关产品生产的企业。公司成立于1997年,并于2003年3月在上交所主板上市。公司主要产品是集成电路以及相关的应用系统和方案,主要产品包括集成电路、半导体分立器件、LED(发光二极管)产品等三大类。

水晶光电:专业从事光学光电子行业的设计、研发与制造,专注于为行业领先客户提供全方位光学光电子相关产品及服务的公司。公司创建于2002年8月

敏芯股份:成立于2007年,是一家专业从事微电子机械系统传感器研发设计和销售的的高新技术企业,也是国内唯一掌握多品类MEMS芯片设计和制造工艺能力的半导体芯片上市公司,主营产品包括MEMS麦克风、MEMS压力传感器和MEMS惯性传感器

必创科技:成立于2005年,无线传感器网络系统解决方案及MEMS传感器芯片提供商

固锝电子:成立于1990年,2006年在深交所主板上市,是国内半导体分立器件二极管行业完善、齐全的设计、制造、封装、销售的厂商。

感知交互企业

出门问问:以语音交互和软硬结合为核心的AI公司。公司成立于2012年,作为入选“新基建产业独角兽TOP100”的人工智能企业,出门问问拥有完整的“端到端”语音交互相关技术栈,包括声音信号处理、热词唤醒、语音识别、自然语言识别、自然语言理解、语音合成等尖端技术。

汉王科技:国内人工智能产业的先行者,成立于1998年,在人工智能领域深耕二十多年,是一家模式识别领域的软件开发商与供应商,主营业务包括“人脸及生物特征识别”、“大数据与服务”、“智能终端”、“笔触控与轨迹”等

科大讯飞:亚太地区知名的智能语音和人工智能上市企业,公司成立于1999年,公司主营业务包括语音及语言、自然语言理解、机器学习推理及自主学习等人工智能核心技术研究、人工智能产品研发和行业应用落地。科大讯飞作为中国人工智能产业的先行者,在人工智能领域深耕二十年,公司致力让机器“能听会说,能理解会思考”,用人工智能建设美好世界,在发展过程中形成了显著的竞争优势。

声智科技:融合声学和人工智能技术的平台服务商,也是全球人工智能 *** 作系统领域的开拓者。公司成立于2016年4月,拥有声学与振动、语音与语义、图像与视频等远场声光融合算法,以及开源开放的壹元人工智能交互系统(SoundAI Azero),具有声光融合感知、人机智能交互、内容服务聚合、数据智能分析、IoT控制和即时通讯等能力。

云知声:致力于AI产业的高新技术企业,成立于2012年6月,总部位于北京。公司以AI语音技术起家,经过多年经验和技术的积累,逐渐构筑起一个涵盖机器学习平台、AI芯片、语音语言、图像及知识图谱等技术的技术城池,成为了具有世界顶尖智能语音技术的独角兽

生物识别企业

商汤科技:全球领先的人工智能平台公司,也是中国科技部指定的首个“智能视觉”国家新一代人工智能开放创新平台。公司自主研发并建立了全球顶级的深度学习平台和超算中心,推出了一系列领先的人工智能技术,包括:人脸识别、图像识别、文本识别、医疗影像识别、视频分析、无人驾驶和遥感等。商汤科技已成为亚洲领先的AI算法提供商。

神州泰岳:致力于将人工智能/大数据技术、物联网通讯技术、ICT技术进行融合,大力提升行业/企业组织信息化、智能化的质量与效率的高新技术企业。公司成立于2001年

端侧BIoT

比特大陆:是一家全球领先的科技公司,成立于2013年。公司立足中国,以全球视野整合前沿研发资源,专注于高速、低功耗定制芯片设计研发,其产品包括算力芯片、算力服务器、算力云,主要应用于区块链和人工智能领域。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/10674035.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-10
下一篇 2023-05-10

发表评论

登录后才能评论

评论列表(0条)

保存