物联网体系结构如何,是用什么协议和标准,如何收集、处理、发射、接收信息?

物联网体系结构如何,是用什么协议和标准,如何收集、处理、发射、接收信息?,第1张

物联网的英文名称为"The Internet of Things” 。由该名称可见,物联网就是“物物相连的互联网”。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础之上的延伸和扩展的一种网络;第二,扩展到了任其用户端延伸和何物品与物品之间,进行信息交换和通信。因此,物联网的定义是通过射频识别(RFID)装置、红外感应器、 全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网相连接,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。
物联网的整个结构可分为射频识别系统和信息网络系统两部分。射频识别系统主要由标签和读写器组成,两者通过RFID空中接口通信。读写器获取产品标识后,通过internet或其他通讯方式将产品标识上传至信息网络系统的中间件,然后通过ONS解析获取产品的对象名称,继而通过EPC信息服务的各种接口获得产品信息的各种相关服务。整个信息系统的运行都会借助internet的网络系统,利用在internet基础上的发展出的通信协议和描述语言。因此我们可以说物联网是架构在internet基础上的关于各种物理产品信息服务的总和。从应用角度来看,物联网中三个层次值得关注,也即是说,物联网由三部分组成:一是传感网络,即以二维码、RFID、传感器为主,实现对“物”的识别。二是传输网络,即通过现有的互联网、广电网络、通信网络等实现数据的传输与计算。三是应用网络,即输入输出控制终端。
EPC系统是一个非常先进的、综合性的和复杂的系统。其最终目标是为每一单品建立全球的、开放的标识标准。如图2.4所示,它主要由全球产品电子代码(EPC)体系、射频识别系统及信息网络系统三大部分组成[17]。

图24 EPC系统的构成图
(1)EPC编码标准
EPC编码是EPC系统的重要组成部分,它是对实体及实体的相关信息进行代码化,通过统一并规范化的编码建立全球通用的信息交换语言。
(2)EPC标签
EPC标签是装载了产品电子代码的射频标签,通常EPC标签是安装在被识别对象上,存储被识别对象相关信息。标签存储器中的信息可由读写器进行非接触读/写。
32 EPC系统特点
(1)开放的体系结构
EPC系统采用全球最大的公用的刀又TERNET网络系统。这就避免了系统的复杂性,同时也大大降低了系统的成本,并且还有利于系统的增值。梅特卡夫(Metcalfe)定律表明,一个网络大的价值是用户本系统是应该开放的结构体系远比复杂的多重结构更有价值。
(2)独立的平台和高度的互动性
EPC系统识别的对象是一个十分广泛的实体对象,因此,不可能有那一种技术适用所有的识别对象。同时,不同地区,不同国家的射频识别技术标准也不相同。所以开放的结构体系必须具有独立的平台和高度的交互 *** 作性。EPC系统网络建立在INTERNET网络系统上可以与INTERNET网络所有可能的组成部分协同工作
(3)灵活的可持续发展的体系
EPC系统是一个灵活的开放的可持续发展的体系,可在不替换原有体系的情况下就可以做到系统升级。整体的EPC网络 *** 作依赖于RFID系统和网络应用系统的介入,使产品信息有效的传播。安装在不同需求链环境的解读器可以读取标签中储存的产品数据。因此供应链数据可以通过网络及时地检查、更新或者交换信息。
33 EPC编码编码标准
EPC码是新一代与EAN/UPC码兼容的编码标准,在EPC系统中EPC编码与现行GTIN相结合,因而EPC并不是取代现行的条码标准,而是由现行的条码标准逐渐过渡到EPC标准或者是在未来的供应链中EPC和EAN.UCC系统共存。EPC中码段的分配是由EAN.UCC来管理的。在我国,EAN.UCC系统中GTIN编码是由中国物品编码中心负责分配和管理。同样,ANCC也即将启动EPC服务来满足国内企业使用EPC的需求。
EPC码是由一个版本号加上另外三段数据(依次为域名管理者、对象分类、序列号)组成的一组数字。其中版本号标识EPC的版本号,它使得EPC随后的码段可以有不同的长度;域名管理是描述与此EPC相关的生产厂商的信息。
第四章 物联网在家庭中应用
随着时代的发展,中国已经逐步进入了老龄化社会,以后我们社会面临的现状将是一对年轻的夫妻,在照看自己小孩的同时,还要照看2~6对老人,这就为全社会出了一个难题。每家都雇保姆,显然不现实;那么,只能通过科技的手段来解决这个问题了,靠提高家庭的生活品质、方便家庭与外界的信息交互、用传感节点感知家里发生的情况等,这就为家庭物联网的实现奠定了社会基础。
物联网的概念正大行其道,也使人们看到了社会未来的发展趋势,然而物联网大部分却停留在概念阶段,真正规模应用还有待时日。家庭区域相对狭小、需求比较明确,最有可能优先实现物联网的应用。它不只是现代家庭现实的需要(照看老人、孩童),更是人们日益增强的家庭安全
41家庭物联网应用领域
寒冷的冬季,供暖系统使北方城市家庭充满温暖,而当白天大部分人离家上班的时候,空空的房间仍温暖如春。我们需要一个智能化的供暖控制系统。在生产安全领域,在食品卫生领域,在工程控制领域,在城市管理领域,在人们日常生活的各个方面,甚至在人们的娱乐活动中,都需要建立随时能与物体沟通的智能系统。通过装置在各类物体上的电子标签(RFID),传感器、二维码等经过接口与无线网络相连,从而给物体赋予智能,可以实现人与物体的沟通和对话也可以实现物体与物体相互间的沟通和对话。在电度表上装上传感器,供电部门随时都可知道用户的用电情况,实现用电检查、电能质量监测、负荷管理、线损管理、需求侧管理等高效一体化管理,一年来降低电损。在电梯装上传感器,当电梯发生故障时,无需乘客报警、电梯管理部门会借助网络在第一时间得信息,以最快的速度去现场处理故障。
42发展历程
1999年,物联网的概念就已被提出,10年间,世界各国都在加紧研究。物联网的发展共分为四个阶段:第一个阶段是大型机、主机的联网,第二个阶段是台式机、笔记本与互联网相联,第三个阶段是手机等一些移动设备的互联,第四阶段是嵌入式互联网兴起阶段,更多与人们日常生活紧密相关的应用设备,包括洗衣机、冰箱、电视、微波炉等都将加入互联互通的行列,最终形成全球统一的“物联网”。
对于互联网来说,20世纪80年代是黄金时代,这段时间出了一个知名的人物——鲍勃•卡恩(BobKahn),他被人们称为互联网之父(被赋予同样称呼的人还有好几个)。在为互联网做出卓越贡献的同时,他也非常有远见的为另一个始于上世纪80年代的项目——分布式传感网(DistributedSensorNet,简称DSN)——做了奠基。在那个年代,传感器远比我手上的这个大得多,要用一辆卡车来拉。这么大的传感器作为一个个节点组织在一起,通过微波彼此相连,就组成了传感网。
庞大的传感器在体积方面跟不上人们对其功用上的期望,于是研究者们就开始思考能不能把它做得小一点、再小一点。于是,在上世纪90年代,“智能微尘”(SmartDust)这个很有意思的概念出现了,提出者是KrisPister,他是加州大学伯克利分校的教授。这一概念认为可以将计算和通讯集成在约1~2平方毫米的超微型传感器中,用以对周围环境的参数进行探测。其核心的成分是微电机系统(Micro-Electro-MechanicalSystem,简称MEMS;这个概念在当时引起非常大的轰动),该系统中可以集成很多和机械有关的传感器。
当时KrisPister这批人有一个幻想——在蒲公英上面悬挂一个传感芯片,蒲公英飞到哪里就探测哪里的信号,再把信号传递回来。虽然只是一个假想,但当时真有科学家信心百倍地投入其中,并且还把所需的数据算出来了。比如有空气动力学专家计算出了芯片应有的重量等等。在2001年,加州大学伯克利分校的实验室真做出了这种理想中的芯片雏形,比米粒还小,可谓“细如发丝,薄如蝉翼”。他们送给了我一个,当时我还精心包装了一下。可惜最近找不到了,特别遗憾。倘若芯片里面还有电留存的话,说不定我就能通过网络定位到它的“安身之所”了。
在这一时期,有三所高校和研究机构在传感器领域处于领军地位,一是加州大学伯克利分校(以KrisPister为代表,他们提出了“智能微尘”理论),另外两个是加州大学洛杉矶分校(他们提出了“微无线技术”)和施乐帕克研究中心(XeroxPARC)。施乐帕克研究中心的团队主要由我带领,我们做的是传感信息处理和“智能物质”(SmartMatter),希望能把计算、微电机系统放到物理世界中,与“智能微尘”也有非常紧密的联系。
自本世纪初以来,对于传感的研究越来越受到人们的重视,有很多学校和大公司的研发机构开始进行了类似的研究,并有许多新兴公司借此东风异军突起。将传感器连接成“网”或“系统”,就成了传感网。除了传感网以外,类似的概念也相继提出,比如“CyberPhysicalSystem”和“InternetofThings”(简称IOT)。相较而言,IOT的概念在提出的初期更接近于日常生活,比如常见的RFID(RadioFrequencyIdentification,射频识别)技术就是它的一部分。
关于传感网和物联网的历史,若从大的传感器开始算起,传感网诞生至今应有30年了;而若从微传感网(MicroWirelessSensorNetwork)来说,应该仅有15至20年:微传感网始于上世纪90年代,那个时期的人们刚刚提出“微电机系统”的概念,试图把传感器和计算机处理和通讯全部都集成在一个芯片上,即“智慧微尘”。
其实传感器的历史,归结起来就八个字——从大到小,以点到面。这八个字看似简单,但做起来却是困难重重——要想让传感器真正“飞入寻常世界中”,它必需在体积、造价、能耗等方面进行“瘦身”,这样它才真正能够进入到物理世界。
然而,造型的缩小并不是传感进入生活的唯一条件,还需要互联网技术的配合以实现从点到面的网际联系。就IP地址而言,物联网应采用IPv6(IPv4必然不够),它有128位两进制的IP网址数,这相当于给世界上的每个沙粒都赋予了一个 IP地址。唯有当所有的物体都有一个属于自己的IP的时候,物联网才能真正实现。总而言之,物联网的实现需要这两方面的相辅相成:一是利用微处理技术(micro-fabrication),提高集成度;其二是运用IP技术,以提供足够丰富的网址。
43面临的问题
国内智能家居市场存在很多问题。1、进入门槛较高,一般一次性投入要1、2万元,这就大大限制了中等收入以下人群的购买需求。2、功能华而不实,很多都是遥控个灯光、音响,需求跟投入不成比例。3、生搬硬套,将原来很多工业上使用的东西直接照搬到家庭里,缺少人性化,不能完全适合家居生活需要。4、很多智能家居企业缺少核心技术,东拼西凑,组成个系统就推广,导致成本增高、企业竞争力下降。
RFID超高频技术在我国的应用尚处于起步阶段,一些项目的应用只是试点,还没有得到广泛应用,也没有在供链上应用。比如,只在某一个仓库里应用,或只在生产线上应用。应该说,这些试点项目全
都属于闭环状态的应用,在供应链上串起来应用的案例国内还没有出现。
物联网发展潜力无限,但物联网的实现并不仅仅是技术方面的问题,建设物联网过程将涉及到许多规划、管理、协调、合作等方面的问题,还涉及标准和安全保护等方面的问题,这就需要有一系列相应的配套政策和规范的制订和完善。
首先是技术标准问题。标准是一种交流规则,关系着物联网物品间的沟通。各国存在不同的标准,因此需要加强国家之间的合作,以寻求一个能被普遍接受的标准。
其次是安全的问题。物联网中的物品间联系更紧密,物品和人也连接起来,使得信息采集和交换设备大量使用,数据泄密也成为了越来越严重的问题。如何实现大量的数据及用户隐私的保护,成为待解决的问题。
第三,协议问题。物联网是互联网的延伸,在物联网核心层面是基于TCP/IP,但在接入层面,协议类别五花八门,CPRS、短信、传感器、TD-SCDMA、有线等多种通道,物联网需要一个统一的协议基础。
第四,终端问题。物联网终端除具有本身功能外还拥有传感器和网络接入等功能,且不同行业需求各异议,如何满足终端产品的多样化需求,对运营商来说的一大挑战。
第五,地址问题。每个物品都需要在物联网中被寻址,就需要一个地址。物联网需要更多的IP地址,IPv4资源即将耗尽,那就需要IPv6来支撑。IPv4 向IPv6过渡是一个漫长的过程,因此物联网一旦使用IPv6地址,就必然会存在与IPv4兼容性问题。
第六,费用问题。目前物联网所需的芯片等组件的费用较高,若把所有物品都植入识别芯片花费自然不少,如何有效解决这一问题仍需考虑。
第七,规模化问题。规模化是运营商业绩的重要指标,终端的价格、产品多样性、行业应用的深度和广度都会地用户规模产生影响,如何实现规模化是具有待商讨的问题。
第八,商业模式问题。物联网在商业应用方面的业务模式还不是很明朗,商业模式问题值得更进一步探讨。
第九,产业链问题。物联网所需要的自动控制、信息传感、射频识别等上游技术和产业已成熟或基本成熟,而下游的应用也单体形式存在。物联网的发展需要产业链的共同努力,实现上下游产业的联动,跨专业的联动,从而带动整个产业链,共同推动物联网发展。
要建立一个有效的物联网,有两大难点必须解决:一是规模性,只有具备了规模,才能使物品的智能发挥作用;二是流动性,物品通常都不是静止的,而是处于运动的状态,必须保持物品在运动状态,甚至高速运动状态下都能随时实现对物品的监控和追踪。
实现物联网,首先必须在所有物品中嵌入电子标签等存储体,并需安装众多读取设备和庞大的信息处理系统,这必然导致大量的资金投入。因此,在成本尚未降至能普及的前提下,物联网的发展将受到限制。已有的事实均证明,在现阶段,物联网的技术效率并没有转化为规模的经济效率,目前的所谓物联网应用也没有一个在商业上获得了较大成功。例如,智能抄表系统能将电表的读数通过商用无线系统(如GSM短消息)传递到电力系统的数据中心,但电力系统仍没有规模使用这类技术,原因在于这类技术没有经济效率。
物联网的关键在于RFID、传感器、嵌入式软件及传输数据计算等领域,包括“云计算”、无线网络的扩容和优化等均是物联网普及需解决的问题。只有通过“云计算”技术的运用,才能使数以亿计的种类物品的实时动态管理变得可能。从目前国内产业发展水平而言,传感器产业人水平较低,高端产品为国外厂商垄断。

IP网络广播是一种在网络中向多个目标节点传输数据的技术。广播机制能够让一个节点向网络中的所有设备发送数据,无需知道每个设备的具体地址,从而实现了简单高效的群发传输。 IP网络广播可以分为两种类型:
1 硬件广播:向同一网络上的所有主机传输数据包。例如,在本地局域网中,当一台计算机需要向其他所有计算机发送消息时,可以使用硬件广播。
2 有限制广播:向某个范围内的主机传输数据包。例如,在组播(Multicast)中,一台计算机可以向在同一组播组中的所有计算机同时传输同一份数据。
IP网络广播的具体用途很多,例如:
1 在企业、学校等机构内部进行紧急通知或公告的发布。
2 在网络游戏中进行聊天、形成交互式游戏场景等功能。
3 传播音视频流,例如网络电视直播、在线会议、实况足球等。
4 在智能家居、智能医疗等领域进行设备间的数据传输和控制。
总之,IP网络广播在各行各业中都有着广泛应用,可以大大提高信息的传输效率和工作效率。

主要由基本的概述、地址的表示、子网划分、报头还有通信这几个方面

IPv6的特性

首先是IPv6的基本情况。IPv6是为了弥补IPv4的不足而诞生的。

1互联网的不断发展下,IPv4下的IP地址已经饱和。对于互联网物联网的发展来说可能需要更加充足的IP地址。对于IPv6协议来说,IPv6的地址有128位的地址,可以提供2^128个地址。可以满足不断增长的IP需求

2IPv4本身不提供安全功能,需要其他的安全软件对传输的数据进行加密。IPv6上IPSec安全功能是默认开启的。(IPv4上是可选的)这在一定程度上增加了通信的安全性。

3IPv4的包头长度是可变的,这样的包头加重了路由器转发的负担。而IPv6简化了包头,将不必要的信息放在头的末尾。路由器只需要查看第一部分的包头进行转发即可,不需要再去查看扩展包头。扩展包头可以到应用程序了再进行查看。

4IPv4需要DHCP服务去配置IP。而IPv6支持主机有状态和无状态的自动配置。在一定程度上节省了资源

IPv6由8个16位块(128位二进制)组成。十六进制上由8组4位十六进制数字表示,使用冒号:进行分割。

2001:0000:3238:DFE1:0063:0000:0000:FEFB

就算在十六进制下IP地址仍然显示很长,由此有两种方式来缩短IP地址

1丢弃前导零

如果一个组内有多个零时。可以省略这些零。

2001:0000:3238:DFE1:63:0000:0000:FEFB

2001:0:3238:DFE1:63:0:0:FEFB

2两个或多个块中连续为零可用::表示。

2001:0000:3238:DFE1:63::FEFB

一个IP地址中只能使用一次::否则分析器没有办法确定有多少字段缺少0 没有办法补齐IP地址
1单播:

1 vs 1 主机只与目标地址进行通信。

2 组播:

1 vs N。 主机将数据发送给组播组内的所有主机。

3 任播:

多个接口分配了相同的任播IP地址

主机要与配备有任播IP地址的主机通信,会发送单播消息。路由器会找到最近的目标主机。
有三种单播地址:

全局单薄地址: Global unicast address

    格式: 全局路由前缀+子网ID+接口ID

    可理解为IPv4中的公网地址

全局地址是通过IPv6前缀下发所拿到的一个全局可达的IPv6地址,例如下图中的fd4d:e0f1:f1db::250:56ff:fe86:1b10。有了这个全局IPv6地址,就能跟世界上任何一个IPv6全局地址通讯了,类似于通俗说的公网地址

链路本地地址:link-local address

    自动配置IPv6的地址。始终以FE80开头。

    格式:FE80+0+接口ID

    只可以在本地链路上使用。不能被路由

在同一个交换机下面的机器就能直接通过这个地址通讯啦,不需要再配置别的地址。

·   
 假设公司内网有两个不同的子网A和B(IPv6中的链路就是同一子网内的主机。)

    所以链路A的IPv6主机只能在链路A内与其他IPv6主机进行通信。不能和链路B的IPv6主机进行通信。(如果链路A的IPv6主机要与链路B的IPv6主机进行通信就需要跨路由)

    本地链路地址只能在本地链路上使用。且不能被路由
唯一本地地址: unique local address

这种IPv6地址是全局唯一的。但只应用于本地通信

格式:前缀+本地位+全局ID+子网ID+接口ID

唯一本地IPv6地址始终以 FD 开头

对应于链路本地地址上的例子。唯一本地地址是 可以通过路由 在链路A和链路B上进行通信的。但他的通信范围只局限在私有网络。可以理解为IPv4的私有网络。
IP:19216813  Mask:2552552550

CIDR IP:19216813/24

IPv6使用网络前缀来进行子网划分。

2001:C3:0:2C6A::/64 ----》 subnet

2001:C3:0:2C6A:C9B4:FF12:48BC:1A22/64 ----> address of the subnet
相比IPv4包头来说IPv6的包头精简了很多。
删除掉了IPv4的包头长度/标志/标识/分片偏移/包头校验和/选项/可填充变量

Version:标识Version即版本信息,4代表IPv4,6代表IPv6;

IHL:标识了IP报文的首部长度,大小为20-60字节;

Type of Service:服务类型,在QoS中才会使用到此字段;

Total Length:IP报文段的总长度;

Identification:标识,主机每发一个报文,则+1;

Flags:3个bit,分别为保留位,DF位(0可以分片,1不能分片),MF位(0最后一片,1未完待续);

Fragment Offset:片偏移,分片重组的时候需要使用到的字段,此处不做详细解释;

Time to Live:简称TTL,数据包可在网络中经过的路由节点数;

Protocol:下层协议,如UDP或TCP等;

Header Checksum:首部校验和;

Source Address:源IP地址;

Destination Address:目的IP地址;

Options:选项字段;

Padding:填充字段。

增加了流标签和扩展包头信息

    版本:表示internet协议的版本

    流量类型: 最重要的6位用于服务类型,以便让路由器知道应该向该分组提供什么服务。 最低有效2位用于显式拥塞通知(ECN)。

    流标签:维护同学的数据包的顺序流。尚未定义好如何使用

    有效负载长度:扩展包头+上层数据

    下一个包头:扩展包头

IPv6扩展报文头的引入简化了IPv6基本报文头的格式,一个IPv6报文中可以包含0个及以上扩展报文头。当需要有多个IPv6扩展报文头的时候,IPv6的基本报文头的Next Header字段将会指明下一个扩展报文头的类型,IPv6扩展报文头的Next Header字段将会指明下一个扩展报文头的类型,以此类推,如果后续没有IPv6扩展报文头,那么此字段将指明上层协议类型。

路由设备转发时根据基本报头中Next Header值来决定是否要处理扩展头,并不是所有的扩展报头都需要被转发路由设备查看和处理的。除了目的选项扩展报头可能出现一次或两次(一次在路由扩展报头之前,另一次在上层协议数据报文之前),其余扩展报头只能出现一次。

用来实现地址解析,重复地址检测,路由器发现以及路由重定向等功能。具体的ICMPv6的消息类型及具体作用如下
邻居请求报文NS(Neighbor Solicitation)报文:Type字段值为135,Code字段值为0,在地址解析中的作用类似于IPv4中的ARP请求报文。用来获取邻居的链路层地址,验证邻居是否可达,进行重复地址检测等。
邻居通告报文NA(Neighbor Adivertisment)报文:Type字段值为136,Code字段值为0,在地址解析中的作用类似于IPv4中的ARP应答报文。用来对NS消息进行响应。另外,当节点在链路层变化的时候主动发出NA消息,告知邻居本节点的变化。
ICMPv6路由器请求(Router Solicitation)消息:Type字段值为133,节点启动后,通过RS消息向路由器发出请求,请求前缀和其他配置信息,用于节点的自动配置。
ICMPv6路由器通告(Router Advertisement)消息:Type字段值为134,对RS消息进行回应。在没有抑制RA消息发布的条件下,路由器会周期性地发布RA消息,其中包括前缀信息选项和一些标志位的信息。
ICMPv6重定向(Redirect)消息:Type字段值为137,当满足一定的条件时,缺省网关通过向源主机发送重定向消息,使主机重新选择正确的下一跳地址进行后续报文的发送。
地址解析
整体报文交互总览(NS和NA):
①节点1会发送一个NS报文,Type值为135,源地址为节点1的IPv6地址。目的地址为节点2的被请求节点组播地址,要请求的为节点2的链路层地址。同时NS的报文的Options字段中携带了节点1的链路层地址。如下图:

获取同一链路上邻居节点的链路层地址(与IPv4的ARP功能相同),通过邻居请求消息NS和邻居通告消息NA实现。节点1要获取节点节点2的链路层地址。

DAD (重复地址检测):

邻居请求报文NS(Neighbor Solicitation)报文:Type字段值为135,Code字段值为0,在地址解析中的作用类似于IPv4中的ARP请求报文。用来获取邻居的链路层地址,验证邻居是否可达,进行重复地址检测等。
节点在发送路由器公告前要获得唯一的链路本地地址

为什么要唯一:未确定唯一性的地址不能使用。即不能接收目的地址或者发送源地址为此地址的分组

1接口要加入全节点组播地址 FF02::1

2要生成IPv6地址的请求节点组播地址(solicited-node multicast address)接受地址为IPv6的这些分组

3发送NS请求。源地址为::。目的地址为临时单播地址请求节点的组播地址

4所生成的local-link address会处于暂时状态(Tentative)。如果收到该节点的回应则证明该节点已被使用。需要重新生成新的local-link address如果没有NS回应则证明该节点没有被其他主机使用。则确定local-link address

邻居通告:将地址分配给接口并启用后。主机再次发送邻居通告告诉该段上的其他主机。这个IP地址已经被使用了。
路由器请求:

在段上对路由器发送组播数据包。了解该段上的路由器

帮助主机设置默认网关

路由器通告:

路由器收到路由器请求时会回应主机,告诉它他在链路上的存在

如果路由器觉得自己不是最佳网关,会给主机回复重定向消息。告诉主机有更好的路由器可以使用
IPv4与IPv6是不兼容的,所以需要过度技术的支持

双栈路由器:

网络节点同时支持IPv4和IPv6两种协议。在IP网络上形成逻辑相互独立的两个IP网络。源地址根据要访问的目的地的类型自动选择相应的网络。

大多数软硬件都支持IPv4和IPv6这个方法解决了IPv4和IPv6的共存问题,但是没有解决IPv4和IPv6的互通问题。
目的是为了解决IPv6的信息孤岛问题。

把一个协议数据包的报头(IPv4)直接封装在原包头(IPv6)上,伪装成该一个协议(IPV4)。通过该协议的的网络(IPv4)。到了原本协议相应的网络(IPv6)之后再把添加的包头(IPv4)拆掉

通过NAT-PT(网络地址转换 - 协议转换)将IPv6网络转移成IPv4网络传送给IPv4主机


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/10729577.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-10
下一篇 2023-05-10

发表评论

登录后才能评论

评论列表(0条)

保存