泛海三江主机联网线接法

泛海三江主机联网线接法,第1张

主机和主机通过CAN联网,然后CRT连到其它一台报警主机上就可以了。

CAN是控制器局域网络(Controller Area Network, CAN)的简称,是由以研发和生产汽车电子产品著称的德国BOSCH公司开发的,并最终成为国际标准(ISO 11898),是国际上应用最广泛的现场总线之一。

在北美和西欧,CAN总线协议已经成为汽车计算机控制系统和嵌入式工业控制局域网的标准总线,并且拥有以CAN为底层协议专为大型货车和重工机械车辆设计的J1939协议。

CAN 是Controller Area Network 的缩写(以下称为CAN),是ISO国际标准化的串行通信协议。在汽车产业中,出于对安全性、舒适性、方便性、低功耗、低成本的要求,各种各样的电子控制系统被开发了出来。

总结如下:

由于这些系统之间通信所用的数据类型及对可靠性的要求不尽相同,由多条总线构成的情况很多,线束的数量也随之增加。为适应“减少线束的数量”、“通过多个LAN,进行大量数据的高速通信”的需要,1986 年德国电气商博世公司开发出面向汽车的CAN 通信协议。

此后,CAN 通过ISO11898 及ISO11519 进行了标准化,在欧洲已是汽车网络的标准协议。

1:在控制室先手动打开消防广播主机的监听广播,看看有没有反应,有则主机正常。
2:让控制器主机手动,广播主机都处于自动状态下,随机找一回路的广播模块地址,然后手动启动改该模块广播,并检查状态主机上是否有反馈信息回来,有则正常,没有就需要到现场检查线路和了。
3:排除以上问题了,让所有主机都处于自动状态下,然后到现场手动按下报警按钮模拟火灾过程,观察广播是否响应,看主机有没反馈(事现可以先屏蔽掉其他回路地址)。
如果主机不能联动就可能是编程出问题了,只有找厂家技术员了

无线有线总线,我前面看的文章给大家分享一下。

第一部分,通信控制策略选择

当前智能家居作为物联网一个比较火的分支已经开始慢慢地走入普通老百姓的家庭, 作为一个才接触或者接触不深的普通用户如何在各种狂轰乱炸的智能家居广告中,各种大公司渲染的智能家居生活场景中选择自己合适的智能家居解决方案是一个非常头疼的问题。

当前常用通信技术方案

从实现控制通信技术方案来讲可以归类为有线方案(通过有线介质传递控制信号) 、无线方案(通过无线电波传递无线信号)两大类。

常用有线控制方案又分(RS485总线,CAN总线,KNX总线,IO直控(通过线路的干节点通断传递信号))

常用无线控制方案又分(中短距离zgb,zwave,315/433/24G非组网双向,315/433ASK,WIFI,远距离Lora ,NBIOT(有通信收费))

两分类方案可靠性分析

有线 >无线

由于有线信号传递是通过物理介质,电压的震动变化传递信息,在线路布线规范的情况下受外界的干扰极小,在可靠性的大方向上无线则受制于传输距离,传输范围内的电磁环境,通信组网延时等因素影响存在不能将控制信息传递到被控设备的情况。最直观的例子就是大家用座机打电话给座机电话声音是非常清晰地,但是用手机打电话给手机,或者座机打给手机则有时候会出现通信断断续续的情况。所以有线的可靠性要高于无线。

有线控制方案中: IO直控>总线

IO直控由于是通过通断信号直接输入给控制系统或者嵌入式单片机,中间不经过任何的数据调制,转换,通就是通,断就是断,单片机能非常清晰和清楚的获得通断信号,从而做出执行反应,几乎是没有延时实时发生。

各类总线通信则是通过专用的通讯协议芯片将需要传递的信息调制转换为标准的总线电平信号通过一定频率的电平信号震动来传递信息,中间多了信息程序处理转换和电平转换两个环节。两种方式各有优劣势,现有有线控制方案中一般两种被组合使用。IO直控稳定可靠,但是传输的指令数据有线,两线只能传递0/1,通俗可以理解发电报,总线稳定可靠略低,但是总线两线则可以传输各种控制指令,可以把它理解为可以传输任意信息的电话线。

无线控制方案中: NBIOT>Lora > wifi > zgb/ zwave > 315/433/24G非组网双向 > 315/433ASK

NBIOT由于是基于运营商的手机网络,理论上有信号的地方就能连接控制,但是由于模块价格偏贵和需要支付运营商通信费用,现在还不能大规模应用与家庭,但是在共享单车,智能电表,智能充电桩。。。等比较分散的商业项目应用非常广泛。

Lora也是最近非常热的一个无线通讯技术,集合了双向通信,无线抗干扰能力强,自动调频避开拥堵,通信距离远,上电即可通信等优点,后续再智能家庭中的应用肯定会越来越多,现阶段发展也是受制于模块费用偏贵,体积偏大,组网加密通信体系还不够完善等因素还没有大规模应用。

Wifi由于各大芯片厂商的加入现在价格非常便宜可以堪称廉价,由以前几十元到现在的几元只用了不到2年的时间,被广泛的应用到各种智能单品。但是由于路由组网,网络延时等原因,在大房子大规模应用还是有其局限性,例如停电来电后,需要等待其连接网络才能受控,一个情景执行可能有不一致等情况。

zgb/ zwave 作为老牌的短距离自组网无线通讯协议在几年前的无线通讯方案中可谓风光无限,现在由于wifi的冲击已经慢慢的被边缘化,从当时设计这套通信规则的人来讲,自组网是非常好的一个方式,也非常有远见,但是短距离制约了其发展,对网络布点非常考验经验,你至少要做到在其通信范围内有一个备用节点可以备用,否则一旦关键节点故障,通过这个关键节点的控制设备都会脱网不能控制。同时由于组网需要时间,也不能通电立即运行。适合于面积较小的房子控制,房子一旦大了延时就会非常明显。

315/433/24G非组网双向,这个相当于就是各大厂家自由发挥的比较多没有统一的标准和协议,要点对点,还是多对点,还是点对多,还是多对多全靠厂家后台设置匹配,由于没有标准的组网规则协议,这个的稳定可靠全靠厂家的基本功。通信距离短也不适合大房子应用。

315/433ASK,该方案现在主要传输2262和1527编码无线信号,在世界范围内都是用得比较广的短距离无线通信协议,没有组网的感念,信号直达,简单,控制方便,模块成熟,成本可控,被大规模应用,淘宝上有成千上万种模块可以选择自由组合,扩展非常灵活,劣势就是没有反馈。

通信技术方案选择总结

如果你房子比较大选择有线控制是不二的选择。

如果房子偏小对控制实时性可靠性要求不高,可以选择无线方案。

个人觉得作为家庭控制而言,毕竟这些都是高频使用的设备,有线方案前期布线是多了一个环节但是后期会很省心推荐使用有线为主无线为辅的方案,布线有遗漏的地方用无线去弥补。

第二部分,联网控制策略选择

智能家居作为物联网的重要组成部分,联网控制已经作为一个基础的标配控制方式。现在大家应该被各种云控制的广告包围着吧,各种大数据,智能AI的营销是不是也有耳闻呢?是不是会觉得这些概念都很高端,很前卫。

那什么是云控制,什么是大数据?

简单通俗一点讲就是,你家里老婆什么时候回家,小孩什么时候回家,燃气阀是否开启,传感器探测到你上了几次卫生间,现在家里是否有人。。。这些信息通过家里的智能设备先传递到商家的服务器,然后你的手机通过账号密码连接到商家服务器,商家的服务器将相关的数据推送给你,让你知道家里的状态,你通过手机控制 *** 作家里的设备几点开,几点关,通过商家的服务器控制到你家里的智能设备,这就是云控。 手机<->商家服务器 <-> 家里智能设备。

你吃喝拉撒的这些控制数据累计多了就是大数据。

统计了几个月你每天都是7点上厕所,AI有可能认为你每天都是7点钟上厕所,然后突然又一天7点自动给你把厕所灯打开了,然而你今天想睡懒觉。。。。 这就是AI。

站在开放物联网云平台商角度:

现在有非常多的免费物流网云平台,小米的生态,京东的生态,阿里的生态。。。。大家的思路都是想让智能家居或者家电厂家把所有的设备挂上去,在云端实现对所有设备的管理和控制,现在很多基础服务都是免费的,就像当初的淘宝免费一样,后续这个就说不清楚了。这个是云商的非常精明的盈利模式,自己不用花很多精力去开发各种各样的硬件设备,只需软件平台就能整合各种硬件资源创造财富,同时通过大数据分析各种设备上传的各种数据和用户使用习惯来提炼更大的商业价值。

站在智能家居或者家电设备厂家的角度来看:

自己没有精力或者技术搭建云平台,有个免费的刚好省事,也能广告宣传自己云了一把,感觉云了就高级了。同时能收集用户数据,一举多得!

不知道大家注意了没有,这里面这个环节少了一个用户的角度,上面两种利益群体都是将用户或者说用户所购买的设备、在细一点是用户所购买设备所产生的各种数据作为一种资源,为大数据分析或者更大的布局提供服务。牺牲了用户的小我成就了平台商的大我。

站在用户的角度出发:

1,我是否愿意将我家里的各种设备交给平台商管理?选择平台之后你没得选择,赶紧打开你的手机控制app看看厂家给你预制的隐私协议吧,你可以选择不用,用了我就要收集你的数据。

2,家里所有的设备在云端给人的感觉是否安全? 当家里只是一两个插座的时候可能觉得还无所谓,但是是你家里所有的家用电器,各种探测器,电量数据,视频数据都在云端的时候呢,即使是非常安全的,但是是没有安全感的。

3,平台商服务宕机,设备被黑怎么办?当所有设备有规律的连接到平台之后,在平台的后台是能对这些规律的数据进行分析的,对黑客或者有坏心眼的人也更有诱惑力,想想让几百万个家庭同时电视关闭,水阀全部关闭,带来的轰动效应和影响力绝对可以上头条!

4,我的数据我只想我自己知道行么?现在各种渠道、软件都充斥着用户数据收集的手段,选择云端相当于把自己家庭运行状况数据全部上传。不管是平台商和其他商家都会保证不泄露用户数据,都会说客户第一,但是数据肯定会被平台商或者商家用来分析。这个就看自己感觉了。

作为一个普通用户的基本需求:

1,能安全控制自己家里的设备。

2,不想自己的各种控制数据被上传,泄露,保证自己的隐私。

有没有好的方案供大家选择?

作为一个技术爱好者回答是肯定的!动态域名端口转发

端口数据转发工作原理:只是作转发,不做存储。动态域名提供商服务的设备可以说是千奇百怪各种各样,当然转发的数据也就是各种各样了,在动态域名提供商瞬间转发的杂乱无章、毫无规律的数据大海中要去找没有规律的规律可谓是毫无意义,对黑客的兴趣大大降低,一个宕机也不会影响其他用户。

比较基础的方案是:在拥有公网的动态IP的前提下(南电信北网通的宽带)通过设置动态域名和端口转发自己来搭建一条通道不受各种平台的制约,直接和设备建立连接。

不是技术宅不懂设置,难道就没有更好的方案了么?

这里要讲一下国内比较出名的动态域名厂家就是花生壳了,我记得高中的时候就知道他的存在了。现在10多年过去了这个公司依然还在,同时不断改进,同时期的科迈好像就要差一些了。花生棒硬件的出现给这个解决方案带来了福音,抛开了动态域名申请和路由器端复杂的设置,同时内外穿透使用体验和使用各种云一样,数据不被存储,只转发。也就是你可以不需要拥有公网的动态IP,随便一根网线可以上网就可以,云端填用户名密码,这里填入域名和端口。

最近蒲公英路由器的发布也带来了第二种便捷的联网方案,可以将手机和智能设备之间架起一个独立的网络。

从而实现 手机<->家里智能设备的直接连接。

联网控制方案选择总结

1、家里只是简单的开关插座通断电非核心设备,不在乎数据是否被收集,可以选择云服务方案。

2、家里采用的是系统解决方案,涉及到各种功能系统,对隐私和安全比较在意,选择本地网络+转发控制方案

上面只是我从一个普通用户角度出发所阐述的观点,不是推销花生壳的产品。

一直以为只有自己才想到这些,万能的淘宝给了无数的技术达人以空间,让技术宅的方案能和触及到普通消费者。 具体的大家点击推荐链接去细细的品味!

在完成了基础的通信方案略选择和联网控制策略后,下一讲我将给大家讲解认识智能家居和现在的智能家居能给我们带来什么。

原文来之大家可以自己去看看,如有侵权联系我删除~~~ 原文链接

随着集成电路和嵌入式电脑在汽车上的广泛应用,现代汽车上的电子控制器的数量越来越多,常见的有发动机的电子燃油喷射装置、防抱死制动装置(ABS)、安全气囊装置、电动门窗装置、主动悬架等。电控系统的增加虽然提高了轿车的动力性、经济性和舒适性,但随之增加的复杂电路也降低了汽车的可靠性,增加了维修的难度。从布线角度分析,传统的电子气系统大多采用点对点的单一通信方式,相互之间少有联系,这样必然造成宠大的布线系统。因此,一种新的概念——汽车上电子控制器局域网络CAN,也就应运而生。为使不同厂家生产的零部件能在同一辆汽车上协调工作,必须制定标准。按照ISO有关标准,CAN的拓扑结构为总线,因此称为CAN总线。CAN总线被设计作为汽车环境中的微控制器通信,在车载各电子控制装置ECN之间交 换信息,在车载各电子控制装置ECN之间交换信息,形成汽车电子控制网络。
控制器局域网CAN(Controller Area Network)是一种多主方式的串行通信总线,基本设计规范要求有高的位速率,高抗电磁干扰性,而且能够检测出产生的任何错误。CAN在汽车上的应用,具有很多行业标准或者是国际标准,比如国际标准化组织(ISO)的ISO11992、ISO11783以及汽车工程协会(Societyof Automotive Engigeers)的SAE J1939。CAN总线已经作为汽车的一种标准设备列入汽车的整车设计中。
CAN总线简介
CAN通信协议规定了4种不同的帧格式,即数据帧、远程帧、错误帧和超载帧。基于以下几条基本规则进行通信协调:总线访问、仲裁、编码/解码、出错标注和超裁标注。CAN遵从OSI模型。按照OSI基准模型只有三层:物理层、数据链路层和哀告层,但应用层尚需用户自己定义。CAN总线作为一种有效支持分布式控制或实时控制的串行通信网络,应用范围遍及从高速网络到低成本的多线路网络。如:CAN在汽车中的发动机控制部件、ABS、抗滑系统等应用中的位速率可高达1Mbps。同时,它可以廉价地用于交通运载工具电器系统中,例如电气窗口、灯光聚束、座椅调节等,以替代所需要的硬件连接。其传输介制裁为双绞线,通信速率最高可达1Mbps/40m,直接传输距离最远可达10km/5kbps,挂接设备数最多可达110个。CAN为多主工作方式,通信方式灵活,无需站地址等节点信息,采用非破坏性总线仲裁技术,满足实时要求。另外,CAN采用短帧结构传输信号,传输时间短,具有较强的抗干扰能力。
CAN总线与其它通信协议的不同之处主要有两方面:一是报文传送不包含目标地址,它是以全网广播为基础,各接收站根据报文中反映数据性质的标识符过滤报文,其特点是可在线上网下网、即插即用和多站接收;另外一个方面就是特别强化了数据安全性,满足控制系统及其它较高数据要求系统的需求。
在现代汽车的设计中,CAN总线已经成为构建汽车网络的一种趋势;而汽车网络作为直接与汽车内部各个ECU连接并负责命令的传递、数据的发送及共享,其可靠性和稳定性与整车的性能紧密相关。本文的设计开发是在基于试验条件下搭建的仿真平台,节点之间的通信是通过对等的CAN通信节点进行的。试验表明其运行性能稳定可靠,但实用化仍需要进一步的研究和改进,且程序的通信处理能力、纠错和容错能力有待进一步的提高
比如:
把CAN总线融合到嵌入式平台中,在其ARM-EP9315和ARM-S3C2440嵌入式平台上都做到了CAN总线功能的实现!ARM嵌入式控制平台,具有开放、集成度高、尺寸小、可扩展性强、低功耗等特点,非常适合与数字家电、车载设备、通信终端、网络设备等的应用。如今有了CAN总线的实现,使其在此方面的应用更为有效!
基于单片机AT89C52的CAN总线分布式测控系统的研制
1 CAN总线网络的技术特点[1][2]
用通讯数据块编码,可实现多主工作方式,数据收发方式灵活,可实现点对点、一点对多点及全局广播等多种传输方式;可将DCS结构中主机的常规测试与控制功能分散到各个智能节点,节点控制器把采集到的数据通过CAN适配器发送到总线,或者向总线申请数据,主机便从原来繁重的底层设备监控任务中解放出来,进行更高层次的控制和管理功能,比如故障诊断、优化协调等;
采用非破坏性基于优先权的总线仲裁技术,具有暂时错误和永久性故障节点的判别及故障节点的自动脱离功能,使系统其它节点的通信不受影响;同时,CAN具有出错帧自动重发功能,可靠性高;
信号传输用短帧结构(8字节),实时性好;

不关闭总线即可任意挂接或拆除节点,增强了系统的灵活性和可扩展性;
采用统一的标准和规范,使各设备之间具有较好的互 *** 作性和互换性,系统的通用性好;
通讯介质可采用双绞线,无特殊要求;现场布线和安装简单,易于维护,经济性好。
总之,CAN总线具有实时性强、可靠性高、结构简单、互 *** 作性好、价格低廉等优点,克服了传统的工业总线的缺陷,是构建分布式测控系统的一种有效的解决方案。
2系统总体硬件设计方案
首先,定义各节点的功能,确定各节点检测或控制量的数目、类型、信号特征。这是进行微机测控系统网络化的第一步。原则是尽量避免重复测试。智能节点模块绝大部分是输入输出模块,调节回路可以跨模块构成回路。但考虑到调节回路的安全性,为了保证在上位机或整个通信线路出现重大故障时回路调节不受到影响,设计了隔离型、自整定PID、隔离型温度调节器等带有调节功能的模块。它们的输入输出通道都在同一模块中,其底层软件的功能很强,所有的输入处理、输出增量的计算(多种调节算法可通过组态选择,包括串级调节)、输出,包括自整定模块的过程参数的自动识别都在本模块实现,保证了调节回路的安全性、可靠性。
其次,选择各节点控制器和相应的CAN适配元件。由于各测控节点功能相对单一,数据量少,因此对CPU的要求大大降低,采用8051系列单片机即可满足要求。CAN 总线适配器件主要有:控制器接口、总线收发器和I/O器件。采用Philips公司生产的82C200CAN控制器和与其配套的82C250CAN收发器。82C200具有完成高性能通信协议所要求的全部必要特性。具有简单总线连接的82C200可完成物理层和数据链路层的所有功能。
最后,按照CAN总线物理层协议选择总线介质,设计布线方案,连接成CAN总线分布式测控网络。如图1所示。
3系统的硬件组成[3][4][5]
(1)CAN总线接口模块
① 微处理器
目前广泛流行的CAN总线器件有两大类:一类是独立的CAN控制器,如82C200,SJA1000及Intel 82526/82527等;另一类是带有芯片CAN的微控制器,如P8XC582及16位微控制器87C196CA/CB等。根据当前市场、开发工具和课题的实际需要,系统的智能节点均选用ATMEL 8位单片机AT89C52为微处理器。
② CAN控制器
CAN控制器选用SJA1000作为控制器。SJA1000是高集成度CAN控制器。具有多主结构、总线访问优先权、成组与广播报文功能及硬件滤波功能。输入时钟频率为16MHh时钟,输出可编程控制。由以下几部分构成:接口管理逻辑、发送缓存器、接收缓存器、位流处理器、位定时逻辑、收发逻辑、错误管理逻辑、控制器接口逻辑等。
SJA1000有很多新功能 :标准结构和扩展结构报文的接受和发送;64字节的接收FIFO;标准和扩展帧格式都具有单/双接收滤波器;可进行读/写访问的错误计数器;可编织的错误报警限制:最近一次的错误代码寄存器;每一个CAN总线错误都可以产生错误中断;具有丢失仲裁定位功能的丢失仲裁中断;单发方式(当发主错误或丢失仲裁时不重发);只听方式(监听CAN总线,无应答,无错误标志);支持热插拔(无干扰软件驱动位速率监测)。因此,系统的智能节点均选用SJA1000作为CAN控制器。
③ CAN总线收发器
CAN总线收发器选用PCA82C250作为总线收发器。 PCA82C250是CAN 协议控制器和物理总线之间的接口。82C250 可以为总线提供不同的发送性能,为CAN 控制器提供不同的接收性能。而且它与“ISO 11898”标准完全兼容。PCA82C250的目的是为了增大通信距离,提高系统的瞬间抗干扰能力,保护总线,降低射频干扰(RFI)实现热防护等。为了进一步提高抗干扰措施,在两个CAN器件之间使用了由高速隔离器件6N137构成的隔离电路。 CAN器件与微处理器的硬件连接如图2所示。
硬件电路的设计并不太困难,但有几点应引起注意:
总线两端两个120Ω的电阻,对于匹配总线阻扰,起着相当重要的作用。忽略掉它们,会使数据通信的抗干扰性及可靠性大大降低,甚至无法通信。
82C50第8脚与地之间的电阻Rs称为斜率电阻,它的取值决定了系统处于高速工作方式还是斜率控制方式。把该引脚直接与地相连,系统将处于高速工作方式,在这种方式下,为避免射频干扰,建议使用屏蔽电缆作总线;而在波特率较低、总线较短时,一般采用斜率控制方式,上升及下降的斜率取决于民的阻值,实验数据表明15~200kΩ为Rs较理想的取值范围,在该方式下,可以使用平行线或双绞线作总线。
SJA1000的TX1脚悬空,RX1引脚的电位必须维持在约05Vcc上,否则,将不能形成CAN协议所要求的电平逻辑。如果系统传输距离近,环境干扰小,可以不用电流隔离,这样可直接把82C250的VREF端(约为05 Vcc)与RX1脚相连,从而简化了电路。
在系统中,SJA1000的片选信号一般由地址总线经译码获得,并由此决定出CAN控制器各寄存器的地址。实际应用中,采用单片机AT89C52的P27为片选信号。所以,SJA1000的地址为:7F00~7F32H。
当上电复位时,AT89C52的上电复位,需要从低到高的电平变化来激活,而SJA1000的17脚RST被激活,需要出现一个由高电平到低电平的跳变,因此,这必须加一个反相器。
(2)数据采集模块
数据采集模块用来将各类传感器的数据传送到CAN总线上。整个电路包括:看门狗X5045,单片机89C52,锁存器74LS373,A/D转换器ADC0809以及CAN控制器SJA1000和收发器82C250。电路板如图3。
数据采集模块的工作原理:各类传感器采集到数据后将0—5V的模拟量传送到ADC0809,0809将转换成的数字量传给89C52,最后单片机将采集到的数据送到SJA1000通过CAN总线收发器82C250传上总线,完成数据采集工作。
(3)控制模块
是一个带有CAN通信功能的隔离型控制器。该模块有一个数据输入点,可以是命令或其他信号,有一个模拟量输出,供输出执行机构是连续变化的控制系统使用,例如控制步进电机;还有一路是数字量输出,供执行机构是两位式的控制系统使用,例如开关设备。这个控制器可以单独作为一个调节器使用,因为在该模块上提供了完整的显示窗口和 *** 作按钮,可以设定温度设定值、PID调节参数等运行过程中可以显示被控对象的PV值和SV值。该模块可以根据设定的控制点及升、降的时间实现自动调节。带有CAN通信口,可以与微机实现通信,也就是说控制模块可以接入CAN 网络系统。通过上位机实现对多个节点上的控制模块设定各控制点的上下限控制点、PID值、实现时间等控制参数,并实时记录各控制器的测量值,描绘出变化曲线,供实验人员对实验结果进行分析。如图4所示。
4系统软件设计
(1)CAN 总线通讯模块
CAN总线测控系统的通信软件分为3部分:CAN初始化、数据发送和数据接收。
① CAN初始化
其主要是设置CAN的通信参数。需要初始化的寄存器有:模式寄存器(Peli CAN模式)、时分寄存器、接收代码寄存器、屏蔽寄存器、总线定时寄存器、输出控制寄存器等。需要注意的是,这些寄存器仅能在复位期间可写访向,因此,在对这些寄存器初始化前,必须确保系统进入了复位状态,并且系统中各CAN控制器的总线定时寄存器的初始化字必须相同。
② 数据发送
现场的各传感器把环境多参数的检测信号(数字量、模拟量、开关量)进行转换处理后,发向CAN控制器的发送缓冲区,然后启动CAN控制器的发送命令,此时CAN控制器将自动向总线发送数据,不再需传感器的微控制器进行干预。若系统中有多个传感CAN控制器同时向总线发送数据,则CAN控制器通过信息帧中的标识符来进行仲裁,标识符数值最小的CAN控制器具有对总线的优先使用权。
③ 数据接收
整个温室微机测控系统中的CAN控制器检测到总线上有数据时会自动接收总线上的数据,存入其接收缓冲区,并向89C52微控制器发送接收中断,启动中断接收服务程序,89C52通过执行中断接收服务程序,从CAN控制器的接收缓冲区读取数据,并对其进行进一步处理工作。
(2)监控模块
集成了所有的数据采集、参数设定、数据统计分析等功能。同时,为了实现 *** 作人员对生产过程的人工干预,如修改给定值、控制参数和报警限等,添加了参数的修改功能;为了建立人机信息联系,并且能将各节点传输来的数据以图形、图表或其它动态方式显示出来,本系统可以使用任何具有DDE(Dynamic Data Exchange)接口的MMI(Man-Machine interface)软件;为了更好的管理各种数据,采取了组态控制方式,能够接收来自MMI软件以及用户软件的DDE连接请求,并将该请求传递给通信驱动部分,由通信驱动转换为通信信号通过传输媒体传递给智能模块的固化软件。并将模块的应答作为DDE *** 作的结果返回给MMI软件及用户软件。
5 结论
将先进的现场总线技术(CAN BUS)应用于智能测控系统,大大提高了系统的可靠性;自主开发了符合国际标准的基于单片机的智能节点,不仅大量节约了资金,而且可以购置通用的同类设备,可节约大量的研发费用;基于工控机的上位机提供了良好的人机界面,使 *** 作更加方便,直观。

不是。
CAN总线特点:
1、国际标准的工业级现场总线,传输可靠,实时性高;
2、传输距离远(最远10Km),传输速率快(最高1MHz bps);
3、单条总线最多可接110个节点,并可方便的扩充节点数;
4、多主结构,各节点的地位平等,方便区域组网,总线利用率高;
5、实时性高,非破坏总线仲裁技术,优先级高的节点无延时;
6、出错的CAN节点会自动关闭并切断和总线的联系,不影响总线的通讯;
7、报文为短帧结构并有硬件CRC校验,受干扰概率小,数据出错率极低;
8、自动检测报文发送成功与否,可硬件自动重发,传输可靠性很高;
9、硬件报文滤波功能,只接收必要信息,减轻cpu负担,简化软件编制;
10、通讯介质可用普通的双绞线,同轴电缆或光纤等;
11、CAN总线系统结构简单,有极高的性价比。
RS485接口标准特点:
(1) RS-485的电气特性:逻辑"1"以两线间的电压差为+(2-6)V表示;逻辑"0"以两线间的电压差为-(2-6)V表示。接口信号电平比RS-232-C降低了,就不易损坏接口电路的芯片,且该电平与TTL电平兼容,可方便与TTL 电路连接。
(2) RS-485的数据最高传输速率为10Mbps
(3) RS-485接口是采用平衡驱动器和差分接收器的组合,抗共模干能力增强,即抗噪声干扰性好。
(4) RS-485接口的最大传输距离标准值为4000英尺,实际上可达 3000米,另外RS-232-C接口在总线上只允许连接1个收发器,即单站能力。而RS-485接口在总线上是允许连接多达128个收发器。即具有多站能力,这样用户可以利用单一的RS-485接口方便地建立起设备网络。但RS-485总线上任何时候只能有一发送器发送。
(5) 因RS-485接口具有良好的抗噪声干扰性,长的传输距离和多站能力等上述优点就使其成为首选的串行接口。
(6) 因为RS485接口组成的半双工网络,一般只需二根连线,所以RS485接口均采用屏蔽双绞线传输。
CAN总线与RS485的比较:
1,速度与距离:CAN与RS485以1Mbit/S的高速率传输的距离都不超过100M,可谓高速上的距离差不多。但是在低速时CAN以5Kbit/S时,距离可达10KM,而485再低的速率也只能到1219米左右(都无中继)。可见CAN在长距离的传输上拥有绝对的优势。
2,总线利用率:RS485是单主从结构,就是一个总线上只能有一台主机,通讯都由它发起的,它没有下命令,下面的节点不能发送,而且要发完即答,受到答复后,主机才向下一个节点询问,这样是为了防止多个节点向总线发送数据,而造成数据错乱。而CAN-bus是多主从结构,每个节点都有CAN控制器,多个节点发送时,以发送的ID号自动进行仲裁,这样就可以实现总线数据不错乱,而且一个节点发完,另一个节点可以探测到总线空闲,而马上发送,这样省去了主机的询问,提高了总线利用率,增强了快速性。所以在汽车等实性要求高的系统,都是用CAN总线,或者其他类似的总线。
3,错误检测机制,RS485只规定了物理层,而没有数据链路层,所以它对错误是无法识别的,除非一些短路等物理错误。这样容易造成一个节点破坏了,拼命向总线发数据(一直发1),这样造成整个总线瘫痪。所以RS485一旦坏一个节点,这个总线网络都挂。而CAN总线有CAN控制器,可以对总线任何错误进行检测,如果自身错误超过128个,就自动闭锁。保护总线。如果检测到其他节点错误或者自身错误,都会向总线发送错误帧,来提示其他节点,这个数据是错误的。大家小心。这样CAN总线一旦有一个节点CPU程序跑飞了,它的控制器自动闭锁。保护总线。所以在安全性要求高的网路,CAN是很强的。
4,价格与培训成本:CAN器件的价格大约是485的2倍这样,485的通讯从软件上是很方便的,只要懂串行通讯,就可以编程,而CAN需要底层工程师了解CAN复杂的层,编写上位机软件也要了解CAN的协议。可谓培训成本较高。
5,CAN总线通过CAN控制器接口芯片82C250的两个输出端CANH和CANL与物理总线相连,而CANH端的状态只能是高电平或悬浮状态,CANL端只能是低电平或悬浮状态。这就保证不会出现象在RS-485网络中,当系统有错误,出现多节点同时向总线发送数据时,导致总线呈现短路,从而损坏某些节点的现象。而且CAN节点在错误严重的情况下具有自动关闭输出功能,以使总线上其他节点的 *** 作不受影响,从而保证不会出现象在网络中,因个别节点出现问题,使得总线处于“死锁”状态。
6,CAN具有完善的通信协议,可由CAN控制器芯片及其接口芯片来实现,从而大大降低了系统的开发难度,缩短了开发周期,这些是只仅仅有电气协议的RS-485所无法比拟的。

1信号线及信号
CAN总线以CAN一High和CAN一历w两条信号线 (双绞线)工作,舒适CAN总线 两条线的电平分别约为OV和5V(隐性时)。
LIN总线只以一条相当于CAN一忱如的信号线工作,隐性时电平接近电瓶电压,并随 之浮动;显性时电平接近地电平。使用0·35mmz导线,颜色为紫底白线。
2·组件
CAN总线工作时,电子单元中除了需要相对复杂的收发器外,"通常还需要用专门的协 议控制器。LIN总线单元中的收发器较简单,而且由于协议简单,通常不需要专门的协议 控制器。
3·传输速率
CAN总线的位速率较高,在汽车中使用时通常为5OOkb/s,最低的也达到1OOkb/s。 LIN总线的最高位速率为2Okb/s,通常使用1920Ob/s或9600b/s的速率。
4·系统结构
CAN总线为多主机系统,即接人总线的任一电子单元都可通过总线仲裁来获取总线控 制权,并向总线系统中发送信息,单元在发出完整的ID时即为主机。CAN总线使用11位 ID(甚至更多),在一个子系统中可有较多的单元。
LIN总线为单主机多从机系统,每一子系统中有且只有一个主机,所有的信息传送都 由主机控制,从机必须等待主机发出了与它对应的ID后才能发送信息。LIN总线使用6位 ID,在一个子系统中只能有较少的单元。
5·可靠性
CAN总线采用可靠性很高的CRC校验。
LIN总线采用可靠性相对较差的带进位的和校验。
6·成本
CAN总线能用于各种信息传送的场合,但成本较高,工艺性相对差些。
LIN总线只能用于对速率及可靠性要求不是很高的场合,如舒适系统或某些子系统等, 优点是成本低,工艺性好。

20世纪80年代后, MCU和MPU开始在汽车中被广泛使用,汽车电子化进程开始逐年加快。近几年,智能化和网联化在汽车行业兴起,汽车电子化程度更上一层楼。据统计,当前汽车的创新70%来源于汽车电子产品,电子产品成本占整车比例已经从上世纪70年代的4%,成长到现在的30%左右。未来仍将进一步提升,预期到2030年,该比例将可达到50%。在电子零部件越来越多,信息传输量越来越大的需求促动下,汽车网络化势头已经不可挡。因此,传统的电气网络已无法适应现代汽车电子系统的发展,新型汽车总线技术应运而生。
图|汽车总线
目前汽车上普遍采用的汽车总线有局部互联协议LIN和控制器局域网CAN,正在发展中的汽车总线技术还有高速容错网络协议FlexRay、用于汽车多媒体和导航的MOST以及与计算机网络兼容的蓝牙、无线局域网等无线网络技术。
在这里,与非网编辑主要讲解一下传统三大总线CAN、LIN、FlexRay和汽车总线“新贵”以太网,看一下每一个汽车总线的特点、优势和未来发展趋势。
CAN总线

CAN-BUS即CAN总线技术,全称为“控制器局域网总线技术(Controller Area Network-BUS)”。Can-Bus总线技术最早被用于飞机、坦克等武器电子系统的通讯联络上。将这种技术用于民用汽车最早起源于欧洲,在汽车上这种总线网络用于车上各种传感器数据的传递。
图|CAN总线
汽车上面布满了各种控制单元,越是高级的汽车,其控制单元越多,控制系统越复杂。每个控制单元都可看做一台独立的电脑,它可以接受信息,同时能对各种信息进行处理、分析,然后发出一个指令。比如发动机控制单元会接受来自进气压力传感器、发动机温度传感器、油门踏板位置传感器、发动机转速传感器等等的信息,在经过分析和处理后会发送相应的指令来控制喷油嘴的喷油量、点火提前角等等,其它控制单元的工作原理也都类似。在这里可以给大家做一个比喻,车上的各种控制单元就好比一家公司各个部门的经理,每个部门的经理接受来自自己部门员工的工作汇报,经过分析作出决策,并命令该部门的员工去执行。
部分汽车的控制单元之间的所有信息都通过两根数据线进行交换,这种数据线也叫CAN数据总线。通过该种方式,所有的信息,不管信息容量的大小,都可以通过这两条数据线进行传递,这种方式充分的提高了整个系统的运行效率。
图|CAN-BUS
总线系统之所以称作为CAN-BUS,其实也是因为它的工作原理与运行中的公共汽车很类似。每个站点相当于一个控制单元,而行驶路线则是CAN数据总线,CAN数据总线上传递的是数据,而公共汽车上承载的是乘客。某个控制单元接收到负责向它发送数据的传感器的信息后,经过分析处理会采取相应措施,并将此信息发送到总线系统上。这样此信息会在总线系统上进行传递,每个与总线系统连接的控制单元都会接收到此信息,如果此信息对自己有用则会存储下来,如果对其无用,则会进行忽略。
目前汽车上的CAN数据总线连接方式主要有两种,一种是用于驱动系统的高速CAN总线,速率可达到500kb/s,另一种是用于车身系统的低速CAN总线,速率为100kb/s。当然对于中高级轿车还有一些如娱乐系统或智能通讯系统的总线,它们的传输速率更高,可以超过1Mb/s。

接下来,我们看一下CAN总线有哪些优势:
·比传统的布线方式的数据传输速度更高。

·比传统布线方式要节省线束,降低了车身重量,同时优化了车身的布线方式。

·以CAN总线方式连接的控制单元中有一个发生故障,其它控制单元仍可发送各自的数据,互不影响。

·CAN数据总线为双线制,如果有一条发生故障,CAN系统会转为单线运行模式,提高了整车的稳定性。

·CAN系统的双线在实际中是像“麻花”一样缠绕在一起的,这样可以有效的防止电磁波的干扰和向外辐射。

·基于CAN总线系统可以实现更丰富的车身功能。
CAN总线是当前汽车总线应用最广的一种,但是由于自身安全性等原因,人们已经开始为CAN总线寻求合格的替代者, FlexRay、以太网是这个过程中呼声较高的。
LIN总线

LIN总线是针对汽车分布式电子系统而定义的一种低成本的串行通讯网络,是对控制器区域网络(CAN)等其它汽车多路网络的一种补充,适用于对网络的带宽、性能或容错功能没有过高要求的应用。LIN总线是基于SCI(UART)数据格式,采用单主控制器/多从设备的模式,是UART中的一种特殊情况。
图|车载网络示意图
LIN总线是面向汽车低端分布式应用的低成本,低速串行通信总线。它的目标是为现有汽车网络提供辅助功能,在不需要CAN总线的带宽和多功能的场合使用,降低成本。
LIN联盟成立于1999年,并发布了LIN010版本。最初的成员有奥迪、宝马、克莱斯勒、摩托罗拉、博世、大众和沃尔沃等。
LIN总线相对于CAN的成本节省主要是由于采用单线传输、硅片中硬件或软件的低实现成本和无需在从属节点中使用石英或陶瓷谐振器。这些优点是以较低的带宽和受局限的单宿主总线访问方法为代价的。
图|汽车总线示意图
LIN总线上的所有通讯都由主机节点中的主机任务发起,主机任务根据进度表来确定当前的通讯内容,发送相应的帧头,并为报文帧分配帧通道。总线上的从机节点接收帧头之后,通过解读标识符来确定自己是否应该对当前通讯做出响应、做出何种响应。基于这种报文滤波方式,LIN可实现多种数据传输模式,且一个报文帧可以同时被多个节点接收利用。
LIN总线是CAN总线的副手。未来,或许将随着CAN总线一起退出历史的舞台。

FlexRay

FlexRay是一种用于汽车的高速、可确定性的,具备故障容错能力的总线技术,它将事件触发和时间触发两种方式相结合,具有高效的网络利用率和系统灵活性特点,可以作为新一代汽车内部网络的主干网络。FlexRay是汽车工业的事实标准(facto standard)。
图|FlexRay
Flexray的拓扑结构多样,既可以像CAN总线一样使用线型结构,也可以使用星型结构。中心节点负责转发信息。当除中心节点外的某个节点损坏或线路故障时,中心节点可以断开与该节点的通信。但当中心节点损坏时,整个总线便无法工作。可以将多个星型总线的中心节点连接起来。
Flexray和CAN总线最本质的区别是总线分配的方式不同。CAN总线是采用CSMA/CA机制。各节点会一直监听总线,发现总线空闲时便开始发送数据。Flexray用的是TDMA(Time Division Multiple Access) 和FTDMA(Flexible Time Division Multiple Access)两种方法。Flexray将一个通信周期分为静态部分、动态部分、网络空闲时间。静态部分使用TDMA方法,每个节点会均匀分配时间片,每个节点只有在属于自己的时间片里面才能发送消息,即使某个节点当前无消息可发,该时间片依然会保留(也就造成了一定的总线资源浪费)。在动态部分使用FTDMA方法,会轮流问询每个节点有没有消息要发,有就发,没有就跳过。静态部分用于发送需要经常性发送的重要性高的数据,动态部分用于发送使用频率不确定、相对不重要的数据。
图|FlexRay
Flexray相比较于CAN总线要复杂许多,安全性相对较高。但是,Flexray总线也有其弊端,就是造价成本过高,除了德系车厂在量产车上使用过,其他国家极少见。随着汽车电子化程度的增加,对总线带宽的要求也越来越高。用Flexray来取代原来普遍使用的CAN总线是不现实的,因为成本实在太高。
以太网

新的汽车功能,如自动泊车系统、车道偏离检测系统、盲点检测和高级信息娱乐系统等引发了对新的数据总线需求。显然,未来我们需要的是更加开放、高速,且易于与其他电子系统或者设备集成的车载网络,同时有助于减少功耗,线束重量和部署成本。
图|多功能汽车系统示意图
传统车载网络支持的通信协议较为单一,而车载以太网可以同时支持AVB、TCP/IP、DOIP、SONIP等多种协议或应用形式。其中,Ethernet AVB 是对传统以太网功能的扩展,通过增加精确时钟同步、带宽预留等协议增强传统以太网音视频传输的实时性,是极具发展潜力的网络音视频实时传输技术。SOME/IP(Scalable Service-Oriented MiddlewarE on IP)则规定了车载摄像头应用的视频通信接口要求,可应用于车载摄像头领域,并通过API实现驾驶辅助摄像头的模式控制。
作为AVB协议的扩展,车载时间敏感网络(TSN,  Time-Sensitive Networking)则引入时间触发式以太网的相关技术,能高效的实现汽车控制类信息的传输。此外,1Gbit 速率通信标准的车载以太网同时还支持 POE(Power Over Ethernet)功能和高效节能以太网(EEE, Energy-Efficient Ethernet)功能,POE 功能可在双绞线传输数据的同时为连接的终端设备供电,省去了终端外接电源线,降低了供电的复杂度。
图|车用以太网
当前,以太网和CAN的连接通过以太网网关来实现。以太网目前还不是用来取代CAN的,主要还是应用在非CAN的部分。车载以太网不仅具备了适应ADAS、影音娱乐、汽车网联化等所需要的带宽,而且还具备了支持未来更高性能的潜力(如自动驾驶时代所需要的更大数据传输)。它将成为实现多层面高速通信的基石,相对于20世纪90年代的控制器局域网(CAN)革命,它的规模将更大,意义将更深远。专家预测,到2020年,汽车中部署的以太网端口将达5亿个。
研究人员表示:“CAN通过变频变换来控制,这比以太网好,因此在一段时间内都不会被以太网取代。但是到2021年以后,随着ESN这个新以太网协议推出,估计汽车会陆续去掉CAN总线,而仅有以太网通信。”
为何现在选择车载以太网?

ADAS 和自动驾驶汽车需要通过高带宽和低延迟的网络来连接所有传感器、摄像头、诊断工具、通信系统以及中央人工智能。这些技术会产生、发送、接收、存储和处理海量数据。

现在的大部分汽车通过 CAN 或 LIN 联网,但随着数据传输速度和数据量的增加,这些总线因为带宽较低、体积较大而不太适合用于背板。在现代化互联汽车中,CAN/LIN总线仍然会有一席之地,但它不会成为通信系统的骨干。

如果您看一看当今的汽车设计以及使用车载以太网的地方,再看看一两年后的汽车设计,就会发现采用车载以太网的总线数量越来越多。

图1:1TPCE =1个双绞线 100 Mb/s 以太网。RTPGE =减少的双绞线千兆位以太网

下表对车载以太网与之前的 CAN 和 LIN 技术进行了比较。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/12618251.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-26
下一篇 2023-05-26

发表评论

登录后才能评论

评论列表(0条)

保存